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(Traditional) Machine Learning vs. Transfer Learning

* Transfer Learning
e Collecting/annotating data is typically expensive.

e Improved learning & understanding in the target domain by leveraging
knowledge from the source domain
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Research Focuses

* Transfer Learning for
e Homogeneous/heterogeneous domain adaptation
e Multi-label classification / zero-shot learning
e Robust face recognition (e.g., cross-resolution, cross-modality, etc.)



Heterogeneous Domain Adaptation

e Deep Transfer Learning for Cross-Domain Data Classification
e Learning from source & target-domain data described by distinct types of features
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Heterogeneous Domain Adaptation (cont’d)

e Transfer Neural Trees (TNT)
* Joint learning of cross-domain mapping F./F; & cl. layer G (deep neural decision forest)
* Propose stochastic pruning for G to avoid overfitting source-domain labeled data
* Unique embedding loss for learning target-domain data in a semi-supervised setting
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Multi-Label Classification

e Predicting multiple labels w/o using annotated ground truth info (e.g., bounding box)

e Learning across image and label-domain data + exploit |abel co-occurrences
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Multi-Label Classification (cont’d)

e Canonical Correlated AutoEncoder (C2AE) [AAAI'17]

e Unique integration of autoencoder & deep canonical correlation analysis (DCCA)
e Autoencoder in C2AE: label embedding + label recovery + label co-occurrence
e DCCA in C2AE: joint feature & label embedding
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Research Focuses

* Transfer Learning for

e Domain adaptation
e Cross-domain image synthesis/translation/classification



FaceApp r “[

* Beyond putting a smile on your face
e Over 10M downloads




Introduction

e Feature Disentanglement:

e Learn a latent space which factorizes the representation z into different parts (i.e., attributes)
for describing the corresponding info (e.g., identity, pose, or expression of facial images).
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Settings for Feature Disentanglement widt

e Unsupervised Learning
e Disentangling images without observing attribute info Rotation
* No guarantee in disentangling particular semantics angle

e With supervision of image labels, disentangle the associated factor from feature representation
e Can manipulate the output image with label/attribute of interest accordingly. ! ,

e Qurs: Cross-Domain Feature Disentanglement ot 5’
e Source-domain training data: existing annotated instances ‘,, 4
e Target-domain data: no ground truth info, to be adapted/manipulated \,_—;)

e Can be viewed as either semi-supervised learning, or unsupervised domain adaptation



Our Goal

e A unified framework for cross-domain feature disentanglement,
with only attribute supervision from the source domain.
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Related Works

e Feature Disentanglement
e Unsupervised: InfoGAN [1]
e Supervised: AC-GAN [2]

e Unsupervised Cross-Domain Image Synthesis/Translation
* Image synthesis: CoGAN [3]
* Image translation: UNIT [4]

[1] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets. Advances in Neural Information Processing Systems (NIPS), 2016.

[2] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier GANs. arXiv, 2016.
[3] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. Advances in Neural Information Processing Systems (NIPS), 2016

[4] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. arXiv, 2017.



INfoGAN & AC-GAN (Unsup/Sup. Feature disentanglement)
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[2] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585, 2016.



CoGAN (Unsupervised Cross-Domain Image Synthesis)

e Synthesize pairs of corresponding images

e Enforce weight-sharing constraints in high-level layers
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UNIT (Unsupervised Cross-domain Image Translation)

UNIT learns translation functions of mapping an image in one domain to another

without any corresponding images across domains.
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Table 2: UDA results on adapting from the SVHN domain to the
MNIST domain. The results of the other algorithms were dupli-

cated from (Taigman et al., 2017)

Method | Accuracy

SA (Fernando et al., 2013) 59.32%
DANN (Ganin et al., 2016) 73.85%
DTN (Taigman et al., 2017) 84.88%
90.53%
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[4] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. arXiv, 2017.
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Proposed Method - Cross-Domain Disentanglement (CDD)

Source Domain
Xs—

Joint Space

_,Z—

\. i :;;133:[ Real / Fake ]
~1=12,..L|

Encoder Generator X ' Discriminator

Xr—]
Target Domain

X715

&

Figure: Overview of our proposed method



Proposed Method - Cross-Domain Disentanglement (CDD)

Generative Adversarial Network (GAN)
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Proposed Method

AuxiliaryClassifier-GAN (AC-GAN)
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Proposed Method

VAE + AC-GAN
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Proposed Method

VAE + AC-GAN
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Proposed Method

VAE + AC-GAN
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Proposed Method

VAE + AC-GAN for cross-domain images

Xs
Source Domain \ / \\
SEN o n i
| Real/Fake |
Joint Space E é\ Ge
~(1=12..,L]
XT_ ﬂ — XT— B
Encoder Generator X,/ Discriminator
4 N

v" Share the high-level layers of Encoder, Generator, and Discriminator

23

G J




Proposed Method

VAE + AC-GAN for cross-domain images
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Proposed Method

VAE + AC-GAN for cross-domain images
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Proposed Method

VAE + AC-GAN for cross-domain images
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Proposed Method

VAE + AC-GAN for cross-domain images
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Proposed Method

VAE + AC-GAN for cross-domain images
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Proposed Method

VAE + AC-GAN for cross-domain images
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Proposed Method

VAE + AC-GAN for cross-domain images
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Experiments

e Qualitative Evaluation:
e Conditional image synthesis and translation

e Quantitative Evaluation:
e Cross-domain attribute classification

e Dataset

e CelebFaces Attributes dataset (CelebA)
* A large-scale face dataset with 200K+ celebrity images with 40 facial annotated attributes
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S : faces w/o eyeglasses; T : faces w/ eyeglasses; | : attribute of smiling

Target (w/ Eyeglasses )

_ 3.

Source
Domain
Output
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Domain
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Source and target-domain test data are faces w/o eyeglasses and w/ eyeglasses, respectively.

Method CoGAN UNIT Ours*  Ours
Source | 87.03  88.66 89.48 89.73
Target 7192 7182 83.69 84.43

Accuracy (%) 33




Results

S : real photo of faces; T : simulated sketch of faces; | : attribute of smiling

Source (Sketch) Target (Photo)
Original 3 '( ?E‘a
Input BN
N

Smiling

Source

Domain

Output No
Smiling
Smiling

Target

Domain

Output No

Smiling

Table 2: Cross-domain classification results of face images with respect to the attribute of smiling.

Source and target-domain test data are sketch and photo faces, respectively.

Method CoGAN UNIT Ours*  Ours
Accuracy (%) Source | 89.50  90.10 90.19 90.01
y Target | 7890  81.04 87.61 88.28
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Results

S : real photo of faces; T : simulated sketch of faces; | : attribute of eyeglasses

Source (Sketch) Target (Photo)

Original
Input

w/
Source Eyeglasses §i
Domain 1
Output w/o
Eyeglasses §i
w/
Target Eyeglasses
Domam
Output w/o
Eyeglasses

Table 3: Cross-domain classification results of face images with respect to the attribute of eyeglasses.

Source and target-domain test data are sketch and photo faces, respectively.

Method CoGAN UNIT Ouwurs* Ours
Source 96.63 97.65 97.06 97.19
Target 81.01 7980 9449 94.84

Accuracy (%)
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Summary

* Transfer Learning for
e Homogeneous/heterogeneous domain adaptation
e Multi-label classification / zero-shot learning
e Robust face recognition (e.g., cross-resolution, cross-modality, etc.)

* Feature Disentanglement for
e Cross-domain image synthesis/translation/classification
e Only label supervision from a single (source) domain is needed
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