Detecting Nonexistent Pedestrians

Jui-Ting Chien Chia-Jung Chou Hwann-Tzong Chen

Morning Session: Scene Understanding Workshop (SUNw'17)

Organizers: Bolei Zhou, Aditya Khosla, Jianxiong Xiao, James Hays

Afternoon Session: Large SUN Challenge (LSUN'17)

Organizers: Fisher Yu, Peter Kontschieder, Shuran Song, Ming Jiang, Yinda Zhang, Catherine Qi Zhao, Thomas Funkhouser, Jianxiong Xiao

HOME OVERVIEW LEADERBOARD BENCHMARKS SUBMIT CONTACT

Leaderboard for Our CVPR–2017 Workshop Challenge

The challenge is ended. We have received 63 submissions during that time period. Following is the final leader–board, where the parsing challenge is ranked by <u>Mean IoU(%)</u> and the pose challenge is ranked by <u>PCK</u>. We have omitted results without clear description.

Human Pose Challenge

Login

Show 10 + entries					Search:					
Ranking	Method	¢	¢	¢	PCK 🗸	¢	Details (Sub	mit Tim	e 🕴
1	NTHU-Pose				87.400		Details	2017–06	-02 03:	06:07
2	Pyramid Stream Network (Multi-Mode)			82.100		Details	2017–06	-03 08:	03:30
3	BUPTMM-POSE				80.200		Details	2017–06	-04 14:	53:20
4	Hybrid Pose Matchine				77.200		Details	2017-06	-04 13:	38:59
Showing 1 to 4	4 of 4 entries							Previous	1	Next

Abbroviationa

Detecting *nonexistent* pedestrians?

Urban Scene Understanding

What? Where? When? Why?

Stuttgart

Zurich

Tübingen

CITYSCAPES Dataset

Detecting Nonexistent Pedestrians vs. Detecting Pedestrians

- Predict from context
- Where to look at to find people?

Problem Definition

To predict the presence probabilities of nonexistent pedestrians in a street scene

Experimental Results

a. Input image

b. Predicted heat map

c. Pedestrians placed arbitrary

d. Pedestrians placed according to (b)

Pipeline

1. Generate training data

- Collection
- Pose estimation
- Inpainting
- Input / output
- 2. Train the network
 - Adversarial learning
- 3. Synthesize images
 - Pedestrian datasets
 - Synthesis

Training Data

Generate Training Data – Collection

Dataset

DATASET

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes Dataset for Semantic Urban Scene Understanding," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Bibtex]

Type of annotations

1024 x 2048

256 x 512

Generate Training Data – Pose Estimation

Generate Training Data - Inpainting

(b)

Generate Training Data – Input / Output

image

heatmap

More Examples

Pipeline

- 1. Generate training data
 - Collection
 - Pose estimation
 - Inpainting
 - Input / output
- 2. Train the network
 - Adversarial learning
- 3. Synthesize images
 - Pedestrian datasets
 - Synthesis

Task

pedestrian pixel ratio > 5%

pedestrian pixel ratio <= 5%

Network

- FCN
- Stacked Hourglass

Adversarial Learning

• GAN

- DCGAN
- WGAN
- WGAN improved

Using adversarial loss is popular

- Image-to-Image Translation with Conditional Adversarial Networks (CVPR2017)
- Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation
- SalGAN: Visual Saliency Prediction with Generative Adversarial Networks (CVPR2017 workshop)

And more...

Image Inpainting

- Context Encoders: Feature Learning by Inpainting (CVPR2016)
- Generative face completion (CVPR2017)
- Globally and Locally Consistent Image Completion (SIGGRAPH 2017)

Super-Resolution

 Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Object Detection

 A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection (CVPR2017)

Video Prediction

• Generating Videos with Scene Dynamics (NIPS2016)

Semantic Segmentation using Adversarial Networks

Reference:

Experiments - Validation

To evaluate the performance of these methods on predicting heatmaps, we use the recall rate as the metric. It is formulated as follows:

$$rac{1}{N}\sum_{i=1}^{N}rac{area(l_i\cap h_i)}{area(l_i)}$$

where N is the number of images in validation set. $Area(l_i \cap h_i)$ is the overlap between ground truth heatmap l_i and predicted heatmap h_i .

FCN	Hourglass	FCN+D				
0.86	0.88	0.89				

Experiments – Test

- 1. Sidewalks, safety islands, and bus stops are often assigned with high probabilities of pedestrian presence, even if the scene is void of pedestrians.
- 2. The timing is right: The *phantom* pedestrians is inclined to cross the street when there is no car.
- 3. People tend to form groups.
- 4. Depth and perspective are correct: The `sizes' of high-response areas in the heatmap are in accordance with the depth and vanishing point.

1. Sidewalks, safety islands, and bus stops are often assigned with high probabilities of pedestrian presence, even if the scene is void of pedestrians.

1. Sidewalks, safety islands, and bus stops are often assigned with high probabilities of pedestrian presence, even if the scene is void of pedestrians.

2. The timing is right: The `phantom' pedestrians is inclined to cross the street when there is no car.

2. The timing is right: The `phantom' pedestrians is inclined to cross the street when there is no car.

3. People tend to form groups.

3. People tend to form groups.

4. Depth and perspective are correct

4. Depth and perspective are correct

Pipeline

- 1. Prepare training data
 - Collection
 - Pose estimation
 - Inpainting
 - Input / output
- 2. Train the network
 - Adversarial learning
- 3. Synthesize images
 - Pedestrian datasets
 - Synthesis

Pedestrian Datasets

- Images collected from *Cityscapes* and *PedCut*
- Categorized by height, width, aspect ratio...

Synthesis Pipeline - Basic

a. Input image

b. Predicted probability map (raw)

c. (b)with post processing

d. Synthesized according to (c)

small

smooth

smooth

Synthesis Pipeline - Advanced

• Find pedestrians with the most similar pose!

Image

Probability map

Synthetic output

Image

Probability map

Synthetic output

Image

Probability map

Synthetic output

Thanks