Towards Machine Comprehension of Spoken Content

Hung-yi Lee

Machine Comprehension of Spoken Content

300 hrs multimedia is uploaded per minute. (2015.01)

2163 courses on Coursera (today)

- \succ Nobody is able to go through the data.
- In these multimedia, the spoken part carries very important information about the content.
- We need machine to listen to the audio data, understand it, and extract useful information for humans.

Overview

Speech Recognition

Summarization

Summarization

Extractive Summaries

[Lee, et al., Interspeech 12][Lee, et al., ICASSP 13][Shiang, et al., Interspeech 13]

Audio File to be summarized

- Select the most informative segments to form a compact version
- Machine does not write summaries in its own words

Abstractive Summarization

- Now machine can do abstractive summary (write summaries in its own words)
 - <u>Title generation</u>: abstractive summary with one sentence

Sequence-to-sequence

• Input: transcriptions of audio, output: title

Demo

- 作者:葉政杰、周儒杰
- http://140.112.30.37:2401/
- https://www.youtube.com/watch?v=X3BapMI7Wv
 8
- From SONG TUYEN NEWS: https://www.youtube.com/channel/UC-P4mEcWZVrFfdZIuiODiTg

Key Term Extraction

Speech Question Answering

Speech Question Answering

Speech Question Answering: Machine answers questions based on the information in spoken content

New task for Machine Comprehension of Spoken Content

• TOEFL Listening Comprehension Test by Machine

Audio Story: (The original story is 5 min long.)Question: "What is a possible origin of Venus' clouds?"Choices:

(A) gases released as a result of volcanic activity

(B) chemical reactions caused by high surface temperatures

(C) bursts of radio energy from the plane's surface

(D) strong winds that blow dust into the atmosphere

New task for Machine Comprehension of Spoken Content

• TOEFL Listening Comprehension Test by Machine

Using previous exams to train the network

Model Architecture

The whole model learned end-to-end.

More Details

Experimental Results

- Example Naïve approach: 50
 - Find the paragraph containing most key terms in 1.
- the question. 45

40

2. Select the choice containing most key terms in

Experimental Results

Analysis

Type 3: Connecting Information

- Understanding Organization
- Connecting Content
- Making Inferences
- There are three types of questions

Type 3: Pragmatic Understanding

Analysis

Understanding the *Function of What Is Said* Understanding the *Speaker's Attitude*

• There are three types of questions

Talk to Humans

Chat-bot

Sequence-to-sequence learning from human conversation without hand-crafted rules.

On-going project:

- Training by reinforcement learning
- Training by generative adversarial network (GAN)

Demo - Towards Characterization

- 作者: 王耀賢
- https://github.com/yaushian/simple_sentiment_di alogue
- https://github.com/yaushian/personal-dialogue

Audio Word to Vector

Typical Word to Vector

- Machine represents each word by a vector representing its meaning
- Learning from lots of text without supervision

Audio Word to Vector

Machine represents each audio segment also by a vector

Learn from lots of audio without supervision

[Chung, et al., Interspeech 16)

vector

We use *sequence-to-sequence auto-encoder* here

The training is unsupervised.

What does machine learn?

• Typical word to vector:

 $V(Rome) - V(Italy) + V(Germany) \approx V(Berlin)$ $V(king) - V(queen) + V(aunt) \approx V(uncle)$

Audio word to vector (phonetic information)

$$V((1))) - V((1))) + V((1))) = V((1)))$$

$$GIRL GIRLS GIRLS GIRLS (GIRLS)$$

$$V((1))) - V((1))) + V((1))) = V((1)))$$

Demo

Application: Video Caption Generation

Demo

- Can machine describe what it see from video?
- 作者: 莊舜博、楊棋宇、黃邦齊、萬家宏

Next Step

One day we can build all spoken language understanding applications directly from *audio word to vector*.

Audio word to vector with semantics

Concluding Remarks

