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Machine Comprehension
of Spoken Content

@@ o eX

coursera
300 hrs multimedia is
uploaded per minute. 2163 courses on Coursera
(2015.01) (today)

» Nobody is able to go through the data.

» In these multimedia, the spoken part carries
very important information about the content.

» We need machine to listen to the audio data,
understand it, and extract useful information for
humans.



Overview

?

Spoken N Interaction f
Content Jer

Talk to
Humans

Key Term
Extraction

Speech | Question
[ L) # [
Recognition Answering

R Spoken Content
Audio word Retrieval interactive

to vector spoken content
retrieval




Speech Recognition
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[Liao, et al., ASRU 15]
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Summarization
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[Yu, et al., SLT 16]
[Lu, et al., Interspeech 17]
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Summarization

* Deep Neural Network: stack many layers of neurons
* Each neuron is a simple function

Extractive Summaries

[Lee, et al., Interspeech 12]

[Lee, et al., ICASSP 13]

[Shiang, et al., Interspeech 13]

Audio File
to be summarized

deep learning is powerful

This iIs the summary.

Input Layer 1 Layer 2 LayerL  Output

» Select the most informative segments to form a compact

version

> Machine does not write summaries in its own words



Abstractive Summarization

 Now machine can do abstractive summary (write
summaries in its own words)

* Title generation: abstractive summary with one

sentence

Training

Data
title generated

by machine « t =

(in its own words) Wlthout hand-
crafted rules




Sequence-to-seguence

* Input: transcriptions of audio, output: title

WA WB ......
t t
RNN Encoder: read through ) ,
the mput f 7 —p- Zo e
RNN generator
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Demo

* MEEIEEON ~ FERR
* http://140.112.30.37:2401/

* https://www.youtube.com/watch?v=X3BapMI7Wv
8

* From SONG TUYEN NEWS:
https://www.youtube.com/channel/UC-
PAMECWZVrFfdZIuiODiTg
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Speech Question Answering
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Speech Question Answering

What is a possible origin
| of Venus’ clouds?

Gases released as a
result of volcanic activity

Speech Question Answering: Machine answers questions
based on the information in spoken content




New task for Machine
Comprehension of Spoken Content

* TOEFL Listening Comprehension Test by Machine

Audio Story: (The original story is 5 min long.)
Question: “ What is a possible origin of Venus’ clouds? ”
Choices:

(A) gases released as a result of volcanic activity

(B) chemical reactions caused by high surface temperatures

(C) bursts of radio energy from the plane's surface

(D) strong winds that blow dust into the atmosphere



New task for Machine
Comprehension of Spoken Content

* TOEFL Listening Comprehension Test by Machine

Question: “what is a possible
origin of Venus’ clouds?"

Neural
ASR transcriptions Network

4 Choices I

Using previous exams to train the network

Audio Story: answer

e.g. (A)




Model Architecture

The whole model
learned end-to-end.

Answer

Select the choice most | aliiclileln

similar to the answer

Semantics

...... It be quite possible that this be
due to volcanic eruption because
volcanic eruption often emit gas. If
that be the case volcanism could very
well be the root cause of Venus 's thick
cloud cover. And also we have observe
burst of radio energy from the planet
's surface. These burst be similar to
what we see when volcano ......

*

*

Question: “what is a possible origin Audio Story:

of Venus’ clouds?"

Recognition

5 .

Speech




More Details
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Accuracy (%)

Experimental Results

50 Example Naive approach:

1. Find the paragraph containing most key terms in
45 the question.

2. Select the choice containing most key terms in
40 that paragraph.
35 \
30

random

25 -
20

Naive approaches



Accuracy (%)

Experimental Results

20
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48.8% [Fan, Hsu, Lee, Lee, SLT’16]

42.2% [Tseng, Shen, Lee, Lee,

Interspeech’16]

random

Naive approaches




Type 3: Connecting Information
» Understanding Organization

Ana |ySiS > Connecting Content

» Making Inferences

* There are three types of questions
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Type 3: Pragmatic Understanding
An a |y5i5 » Understanding the Function of What Is Said
» Understanding the Speaker’s Attitude

* There are three types of questions
| | | |
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Talk to Humans
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Seqguence-to-sequence learning from human
Ch at"bOt conversation without hand-crafted rules.

e e s Different answers
s e - B =

|52 SO == 5
. W I am fine <EOL>
Source of image:
https://github.com/farizrahm
andu/seq2seq

How are you <EOL> - Positive/negative

On-going project:
» Training by reinforcement learning
» Training by generative adversarial network (GAN)



Demo - Towards Characterization

R A
* https://github.com/yaushian/simple_sentiment_di
alogue

* https://github.com/yaushian/personal-dialogue
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Typical Word to Vector

* Machine represents each word by a vector
representing its meaning

* Learning from lots of text without supervision

o tree
o flower
dog i
orun o .rabblt
@jump cat




Audio Word to Vector

* Machine represents each audio segment also by a
vector | P

¢
W ) | Vector
e

audio segment
(word-level)

Learn from lots of audio
without supervision

[Chung, et al., Interspeech 16)




Sequence-to-sequence

SIS

Auto-encoder MMW—;

We use sequence-to-sequence auto-encoder here

The training is unsupervised.

RNN Encoder

The vector we want
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Sequence-to-sequence
Auto_e nCOd er Input acoustic features

X4 X5 X3
The RNN encoder and
generator are jointly trained.
Y1 Y2 Y3
RNN Encoder t
I I I I

RNN Generator
X, acoustic features

‘MW‘IIIII‘WWW audio segment



What does machine learn?

e Typical word to vector:

V(Rome) — V(Italy) + V(Germany) = V(Berlin)
V(king) — V(queen) + V(aunt) = V(uncle)
* Audio word to vector (phonetic information)
/. ) - V([ , ) + V( [ ) = V( / )
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Demo



Application:
Video Caption Generation

Visual + Audio

A group of people is A group of people is
knocked by a tree. walking in the forest.




Demo

e Can machine describe what it see from video?
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One day we can build all spoken

N EXt Ste p ...... language understanding applications
directly from audio word to vector.

e Audio word to vector with semantics

walk
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Concluding Remarks
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