

Self-improving Learners

Min Sun

National Tsing Hua University

@2nd All Workshop

Challenges of Modern Al

• Large-scale labelled dataset

Is 'data labeling' the new blue-collar job of the AI era?

Automation has put low-skill jobs at risk for decades. And self-driving cars, robots, and speech recognition will continue the trend. But, some experts also see new opportunities in the automated age.

Challenges of Modern Al

• Large-scale labelled dataset

Is 'data labeling' the new blue-collar job of the AI era?

Automation has put low-skill jobs at risk for decades. And self-driving cars, robots, and speech recognition will continue the trend. But, some experts also see new opportunities in the automated age.

• Talent Intensive Workforce

AI獨角獸商湯科技C輪金主浮出,高通領投目標5億美元 | 數位時代

https://www.bnext.com.tw/.../qualcomm-invests-in-chinese-ai-facial... ▼ Translate this page Nov 17, 2017 - 吳育瑞說, 商湯科技現有900人中, 有120位博士, 專長領域包括人臉識別、圖像識別、 動態影像分析等,服務客戶包括手機品牌小米、OPPO和華為, ...

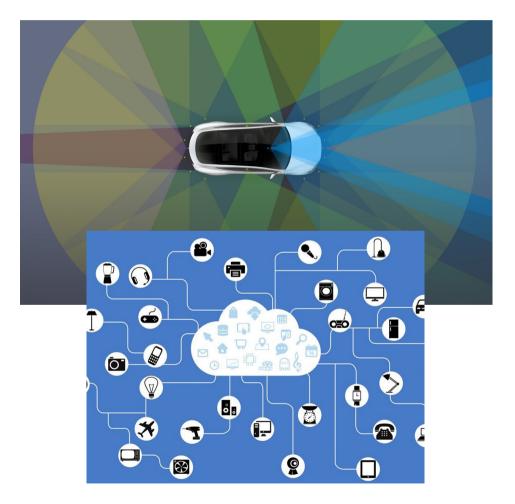
Grad student descent | Science Dryad

https://sciencedryad.wordpress.com/2014/01/25/grad-student-descent/ -

Jan 24, 2014 - One method, common in academia, is 'grad student descent' (a pun on gradient descent), in which a graduate student fiddles around with the ...

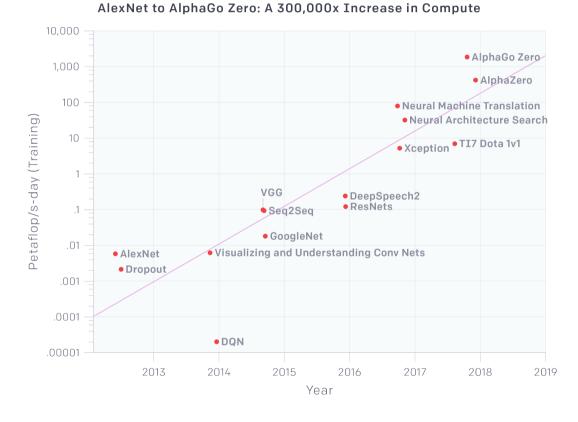
Weapons to Tackle the Challenges

• Sensory data from realistic user scenarios



Weapons to Tackle the Challenges

- Sensory data from realistic user scenarios
- Exponential trends in computing



Outline

- Self-Supervised Learning of Depth from 360° Videos (Sensory, Pitch)
- DPP-Net: Device-aware Progressive Search for Paretooptimal Neural Architectures (Compute)

Self-Supervised Learning of Depth from 360° Videos

Min Sun

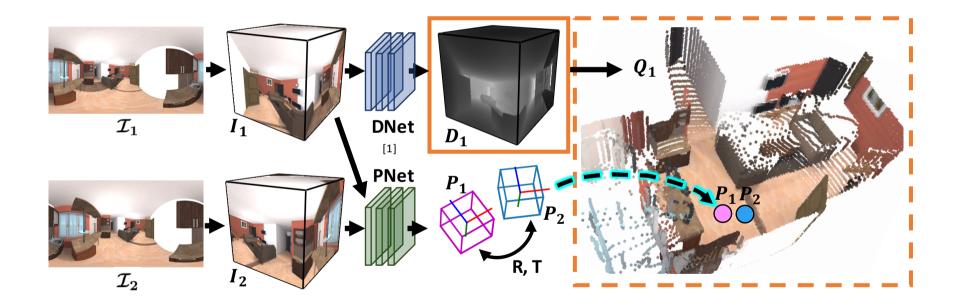
National Tsing Hua University

Under Submission

Image credits: https://hackernoon.com/mit-6-s094-deep-learning-for-self-driving-cars-2018-lecture-2-notes-e283b9ec10a0

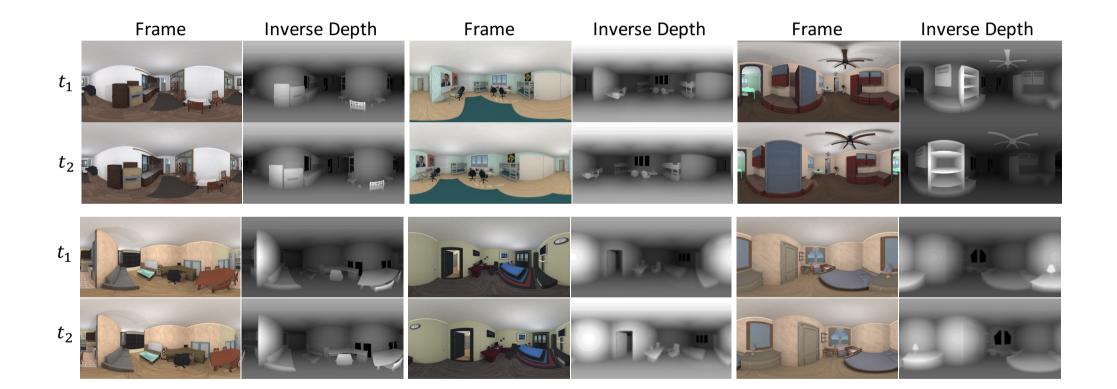
Our Model

I: Equirectangular *I*: Cube D: Depth P: Camera motion Q: Point Cloud



[1] Zhou et al., Unsupervised Learning of Depth and Ego-Motion from Video, CVPR 2017

Dataset – PanoSUNCG

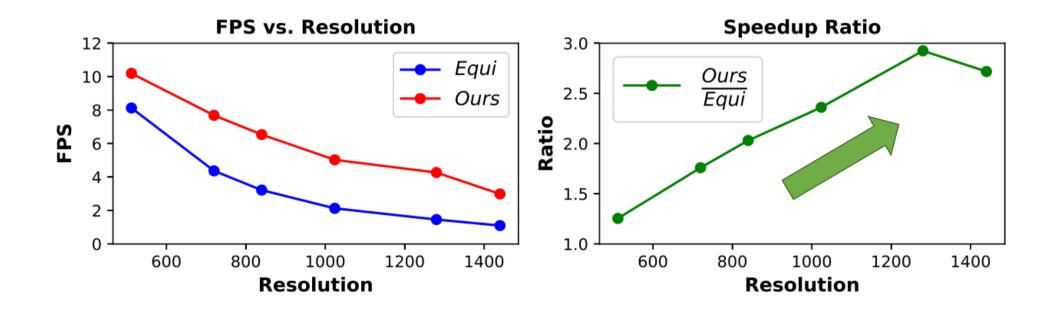


Quantitative Results – Depth

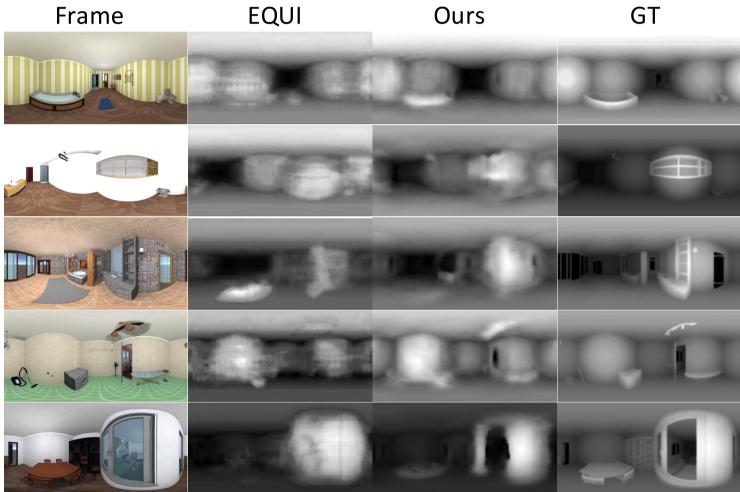
Method	Abs Rel	Sq Rel	RMSE	$RMSE_{log}$	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
Ours (Full Model) Ours w/o \mathcal{L}_{pose} single pose	0.337 0.418 0.462	7.113	8.589 9.916 10.431	$\begin{array}{c} 0.611 \\ 0.698 \\ 0.665 \end{array}$	0.647 0.580 0.526	0.829 0.790 0.752	0.899 0.876 0.848

$$\mathcal{L}_{pose} = \sqrt{\frac{\sum\limits_{i \in f} (P_{t,t+1}^{i'} - P_{t,t+1}^*)^2}{6}}$$

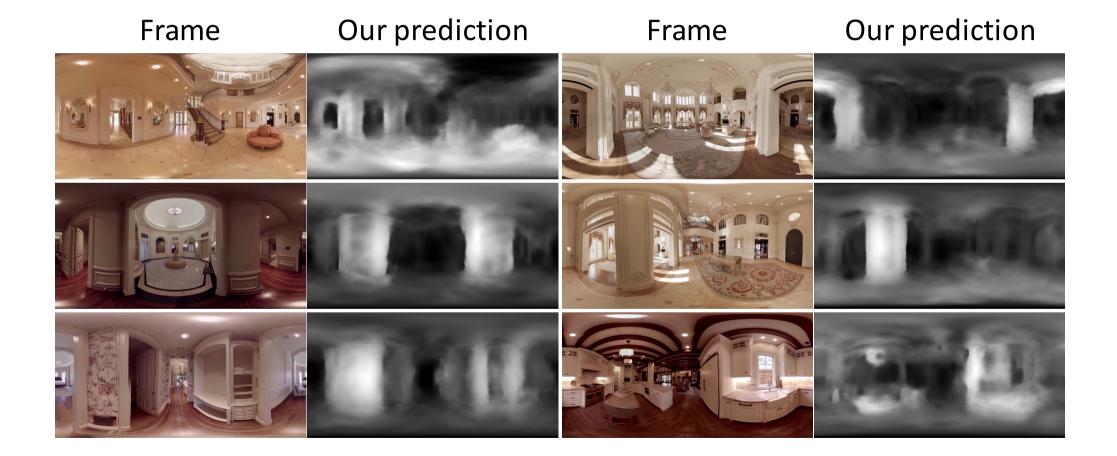
Efficiency – Speedup Ratio



Qualitative Results – PanoSUNCG



Qualitative Results – Real-world Videos



DPP-Net: Device-aware Progressive Search for Paretooptimal Neural Architectures

Jin-Dong (Mark) Dong¹, An-Chieh Cheng¹, Da-Cheng Juan², Wei Wei², Min Sun¹ National Tsing-Hua University¹ Google² ICLR Workshop 2018

https://markdtw.github.io/pppnet.html

Hot Trend - Neural Architecture Search

• Barret Zoph, et al. "Neural Architecture Search with Reinforcement Learning", In ICLR 2017

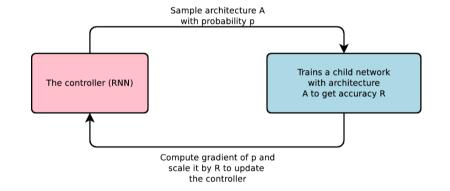
NAS used 800 GPUs for 28days

• Irwan Bello, et al. "Neural Optimizer Search with Reinforcement Learning", In ICML 2017

NASNet used **450 GPUs for 3-4 days** (i.e. 32,400-43,200 GPU hours)

• Hieu Pham, et al. "Efficient Neural Architecture Search via Parameter Sharing", In ArXiv 2018

ENAS used 1 GTX1080Ti for 10 hours



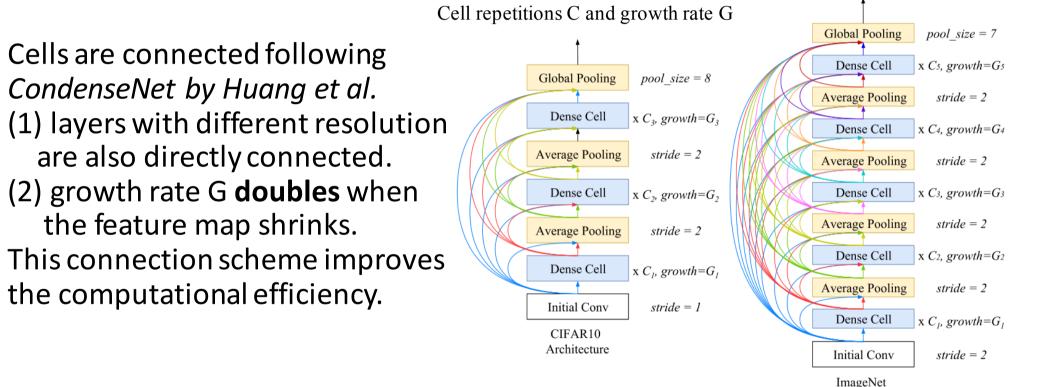
What's Missing

- Current works mostly focus on achieving high classification accuracy regardless of other factors.
 single objective -> multi-objectives (accuracy, inference time, etc)
- Demands for ubiquitous model inference is rising. However, designing suitable NNs for **all devices** (HPC, cloud, embedded system, mobile phone, etc.) remain challenging.
- Therefore, we aim at automatically design such models for different devices considering multiple objectives.

Our Approach: Search Space

•

•



Architecture

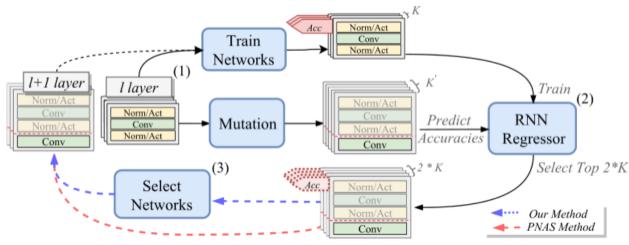
Our Approach: Search Space

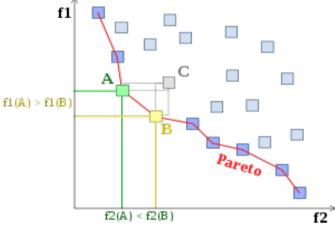
Batch Norm-Relu	PPP-Net	DenseNet	MobileNet	CondenseNet	ShuffleNet
Batch Norm	Norm	BN-Relu	3x3 DWConv	BN-Relu	1x1 GConv
No op	Conv	1x1 Conv	BN-Relu	1x1 LGConv	BN-Relu
1x1 Conv 3x3 Conv	Norm	BN-Relu	1x1 Conv	BN-Relu	3x3 DWConv
1x1 Group Conv	Conv	3x3 Conv	BN-Relu	3x3 GConv	BN
3x3 Group Conv	•				1x1 GConv
1x1 Learned Group Conv	•				BN-Relu
3x3 Depth-wise Conv	(a)				

- Designed a new **cell** search space that covers famous **compact** CNNs.
- Search for a **cell** instead of a whole architecture.

Our Approach: Search Algorithm

- Sequential Model-based Optimization.
 - Sequential: Progressively add layers.
 - Model-based: RNN Regressor -> predict accuracy.
- Select K Networks: Pareto Optimality





Experiment Settings

• Test DPP-Net on 3 different devices.

	Workstation (WS)	Embedded System (ES)	Mobile Phone (Mobile)
Instance	Desktop PC	NVIDIA Jetson TX1	Xiaomi Redmi Note 4
CPU	Intel i5-7600	ARM Cortex-A57	ARM Cortex-A53
Cores	4	4	8
GHz	3.5	1.9	2.0
CUDA	Titan X Pascal	Maxwell 256	_
Memory	64 GB / 12 GB	4 GB	3 GB
Objectives	4	4	5

• Train on CIFAR-10.

	Device-a	ignostic i	metrics	Device-aware metrics				
Model from previous works	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile	
Real et al. [11]	5.4	$5.4\mathrm{M}$	-	-	-	-	-	
NASNet-B $[9]$	3.73	$2.6 \mathrm{M}$	-	-	-	-	-	
PNASNet-1 [15]	4.01	1.6M	-	-	-	-	-	
DenseNet-BC ($k=12$) [31]	4.51	0.80M	-	-	-	0.273	79MB	
CondenseNet-86 [18]	5.0	$0.52 \mathrm{M}$	$65.8 \mathrm{M}$	0.009	0.090	0.149	113MB	
	Device-a	ignostic	metrics	Device-aware metrics				
Model from DPP-Net	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile	
DPP-Net-PNAS	4.36	11.39M	1364M	0.013	0.062	0.912	213MB	
DPP-Net-WS-A	4.78	1.00M	137M	0.006	0.075	0.210	129MB	
DPP-Net-ES-A	4.93	$2.04 \mathrm{M}$	270M	0.007	0.044	0.381	100MB	
DPP-Net-Mobile-A	5.84	0.45M	$59.27\mathrm{M}$	0.008	0.065	0.145	58 MB	
DPP-Net-Panacea	4.58	$0.52 \mathrm{M}$	63.5M	0.008	0.083	0.149	104MB	

	Device-a	ignostic i	metrics	Device-aware metrics			
Model from previous works	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile
Real et al. $[11]$	5.4	$5.4\mathrm{M}$	-	-	-	-	-
NASNet-B $[9]$	3.73	$2.6 \mathrm{M}$	-	-	-	-	-
PNASNet-1 [15]	4.01	1.6M	-	-	-	-	-
DenseNet-BC ($k=12$) [31]	4.51	0.80M	-	-	-	0.273	79MB
CondenseNet-86 [18]	5.0	$0.52 \mathrm{M}$	$65.8 \mathrm{M}$	0.009	0.090	0.149	113MB
	Device-a	ignostic	metrics	Device-aware metrics			
Model from DPP-Net	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile
DPP-Net-PNAS	4.36	11.39M	1364M	0.013	0.062	0.912	213MB
DPP-Net-WS-A	4.78	1.00M	137M	0.006	0.075	0.210	129MB
DPP-Net-ES-A	4.93	$2.04 \mathrm{M}$	270M	0.007	0.044	0.381	$100 \mathrm{MB}$
DPP-Net-Mobile-A	5.84	0.45M	$59.27\mathrm{M}$	0.008	0.065	0.145	58 MB
DPP-Net-Panacea	4.58	$0.52\mathrm{M}$	63.5M	0.008	0.083	0.149	104MB

• DPP-Net-PNAS selects the model with highest accuracy.

	Device-a	ignostic i	metrics	Device-aware metrics				
Model from previous works	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile	
Real et al. [11]	5.4	$5.4\mathrm{M}$	-	-	-	-	-	
NASNet-B $[9]$	3.73	$2.6\mathrm{M}$	-	-	-	-	-	
PNASNet-1 [15]	4.01	1.6M	-	-	-	-	-	
DenseNet-BC ($k=12$) [31]	4.51	0.80M	-	-	-	0.273	79MB	
CondenseNet-86 [18]	5.0	$0.52\mathrm{M}$	$65.8 \mathrm{M}$	0.009	0.090	0.149	113MB	
	Device-a	ignostic i	metrics	Device-aware metrics				
Model from DPP-Net	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile	
DPP-Net-PNAS	4.36	11.39M	1364M	0.013	0.062	0.912	213MB	
DPP-Net-WS-A	4.78	1.00M	137M	0.006	0.075	0.210	129MB	
DPP-Net-ES-A	4.93	$2.04 \mathrm{M}$	270M	0.007	0.044	0.381	100MB	
DPP-Net-Mobile-A	5.84	0.45M	$59.27\mathrm{M}$	0.008	0.065	0.145	58MB	
DPP-Net-Panacea	4.58	$0.52 \mathrm{M}$	63.5M	0.008	0.083	0.149	104MB	

- DPP-Net-PNAS selects the model with highest accuracy.
- DPP-Net-*Device*-A runs the fastest on certain *device*.

	Device-a	gnostic :	metrics	Device-aware metrics			
Model from previous works	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile
Real et al. $[11]$	5.4	$5.4\mathrm{M}$	-	-	-	-	-
NASNet-B $[9]$	3.73	$2.6 \mathrm{M}$	-	-	-	-	-
PNASNet-1 [15]	4.01	1.6M	-	-	-	-	-
DenseNet-BC ($k=12$) [31]	4.51	0.80M	-	-	-	0.273	79MB
CondenseNet-86 [18]	5.0	$0.52\mathrm{M}$	$65.8 \mathrm{M}$	0.009	0.090	0.149	113MB
	Device-a	gnostic	metrics		Device-	aware metric	s
Model from DPP-Net	Error rate	Params	FLOPs	Time-WS	Time-ES	Time-Mobile	Mem-Mobile
DPP-Net-PNAS	4.36	11.39M	1364M	0.013	0.062	0.912	213MB
DPP-Net-WS-A	4.78	1.00M	137M	0.006	0.075	0.210	129MB
DPP-Net-ES-A	4.93	$2.04 \mathrm{M}$	270M	0.007	0.044	0.381	$100 \mathrm{MB}$
DPP-Net-Mobile-A	5.84	0.45M	$59.27\mathrm{M}$	0.008	0.065	0.145	58 MB
DPP-Net-Panacea	4.58	$0.52 \mathrm{M}$	63.5M	0.008	0.083	0.149	104MB

- DPP-Net-PNAS selects the model with highest accuracy.
- DPP-Net-*Device*-A runs the fastest on certain *device*.
- DPP-Net-Panacea performs relatively good on every objectives.

ImageNet Experiment

Model	Top-1	Top-5	Params	FLOPs	Time-ES	Time-Mobile	Mem
Densenet- 121 [31]	25.02	7.71	-	-	0.084	1.611	466MB
Densenet-169 $[31]$	23.80	6.85	-	-	0.142	1.944	489MB
Densenet- 201 [31]	22.58	6.34	-	-	0.168	2.435	$528 \mathrm{MB}$
ShuffleNet 1x (g=8)	32.4	-	$5.4\mathrm{M}$	140M	0.051	0.458	243MB
MobileNetV2	28.3	-	1.6M	-	0.032	0.777	270MB
Condensenet-74 $(G=4)[18]$	26.2	8.30	4.8M	529M	0.072	0.694	238MB
NASNet-A (Mobile)	26.0	8.4	5.3M	564M	0.244	-	-
DPP-Net-PNAS	24.16	7.13	77.16M	9276M	0.218	5.421	708MB
DPP-Net-Panacea	25.98	8.21	4.8M	523M	0.069	0.676	238MB

• DPP-Net-Panacea outperforms CondenseNet in every objectives except number of params and memory usage.

ImageNet Experiment

Model	Top-1	Top-5	Params	FLOPs	Time-ES	Time-Mobile	Mem
Densenet- 121 [31]	25.02	7.71	-	-	0.084	1.611	466MB
Densenet-169 $[31]$	23.80	6.85	-	-	0.142	1.944	489MB
Densenet- 201 [31]	22.58	6.34	-	-	0.168	2.435	$528 \mathrm{MB}$
ShuffleNet 1x (g=8)	32.4	-	5.4M	140M	0.051	0.458	243MB
MobileNetV2	28.3	-	1.6M	-	0.032	0.777	270MB
Condensenet-74 $(G=4)[18]$	26.2	8.30	4.8M	529M	0.072	0.694	$238 \mathrm{MB}$
NASNet-A (Mobile)	26.0	8.4	5.3M	564M	0.244	-	-
DPP-Net-PNAS	24.16	7.13	77.16M	9276M	0.218	5.421	708MB
DPP-Net-Panacea	25.98	8.21	4.8M	523M	0.069	0.676	238MB

- DPP-Net-Panacea outperforms CondenseNet in every objectives except number of params and memory usage.
- DPP-Net-Panacea outperforms NASNet-A in every objectives

Conclusion

- Use largely available sensory data (w/o label) to self-improve your systems
- Leverage exponential increase of computation to reduce the effort of talents