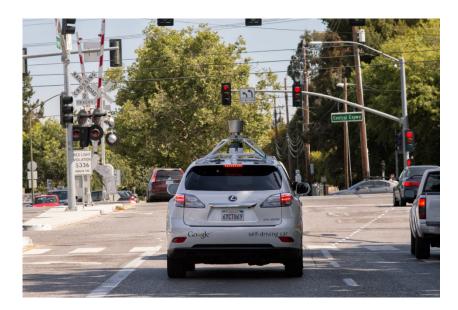

Deep Transfer Learning for Visual Analysis

Yu-Chiang Frank Wang, Associate Professor

Dept. Electrical Engineering, National Taiwan University

Taipei, Taiwan

Trends of Deep Learning



Transfer Learning: What, When, and Why? (cont'd)

• A practical example

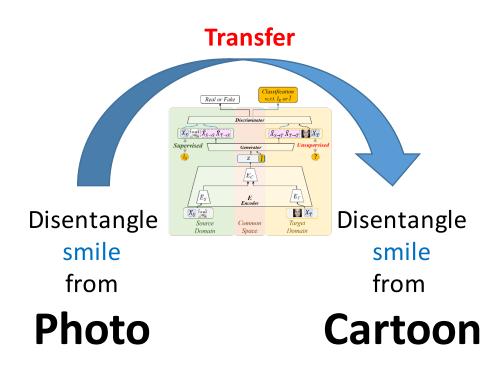
Recent Research Focuses on Transfer Learning

- CVPR 2018
 Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation
- AAAI 2018
 Order-Free RNN with Visual Attention for Multi-Label Classification
 Oppier
- CVPRW 2018
 Unsupervised Deep Transfer Learning for Person Re-Identification

Detach & Adapt – Beyond Image Style Transfer

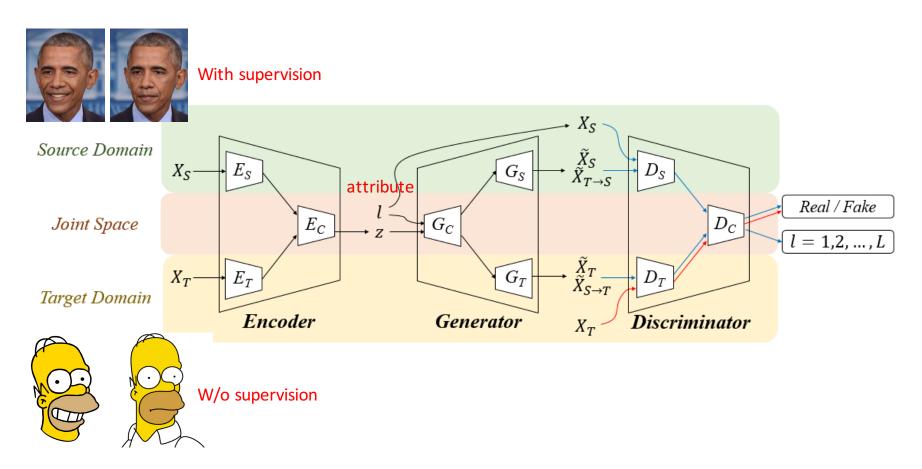
- 1
- Faceapp Putting a smile on your face!
 - Deep learning for representation disentanglement
 - Interpretable deep feature representation

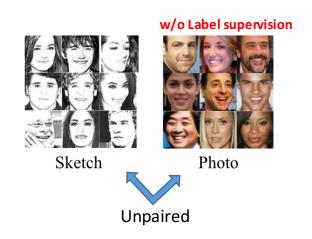
Input
Mr. Takeshi Kaneshiro


Detach & Adapt – Beyond Image Style Transfer

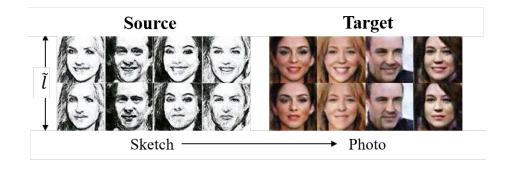
Cross-domain image synthesis, manipulation & translation

With supervision

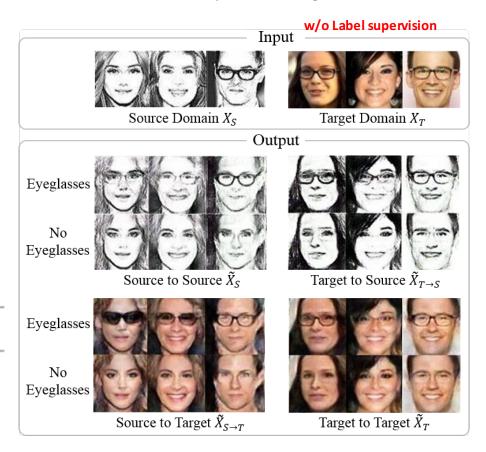

w/o supervision


Detach & Adapt – Beyond Image Style Transfer

Cross-domain image synthesis, manipulation & translation [CVPR'18]



Example Results


- Face
 - Photo & Sketch

		(a) Fac			
Domain	\tilde{l}	CoGAN	UNIT	CDRD	E-CDRD
sketch (\mathcal{S})	smiling	89.50	90.10	90.19	90.01
photo (\mathcal{T})	-	78.90	81.04	87.61	88.28
sketch (S)	glasses	96.63	97.65	97.06	97.19
photo (\mathcal{T})	-	81.01	79.89	94.49	94.84

Conditional Unsupervised Image Translation

Comparisons

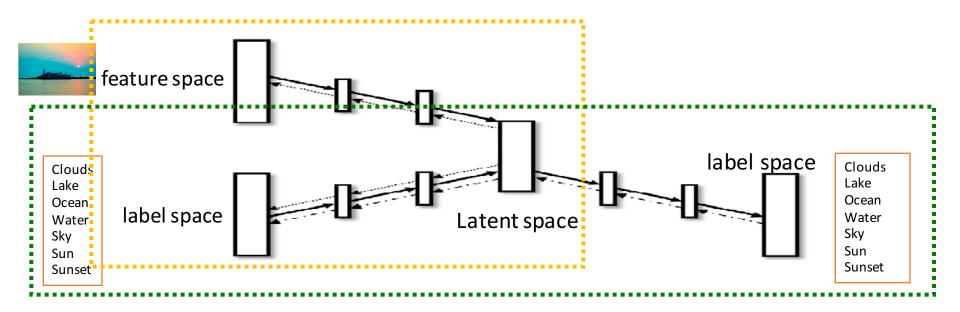
		Cross-Doma	Representation Disentanglement					
	Unpaired Training Data	Multi- domains	Bi-direction	Joint Representation	Unsupervised	Interpretability of disentangled factor		
Pix2pix	X	X	X	X				
CycleGAN	0	X	0	X	Cannot disentangle image representation			
StarGAN	0	0	0	X				
UNIT	0	X	0	0				
DTN	0	X	X	0				
infoGAN	Canno	t translata	0	X				
AC-GAN	Canno	ot translate	X	0				
CDRD (Ours)	0	0	0	0	Partially	0		

Recent Research Focuses on Transfer Learning

- CVPR 2018
 Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation
- AAAI 2018
 Order-Free RNN with Visual Attention for Multi-Label Classification
- CVPRW 2018
 Unsupervised Deep Transfer Learning for Person Re-Identification

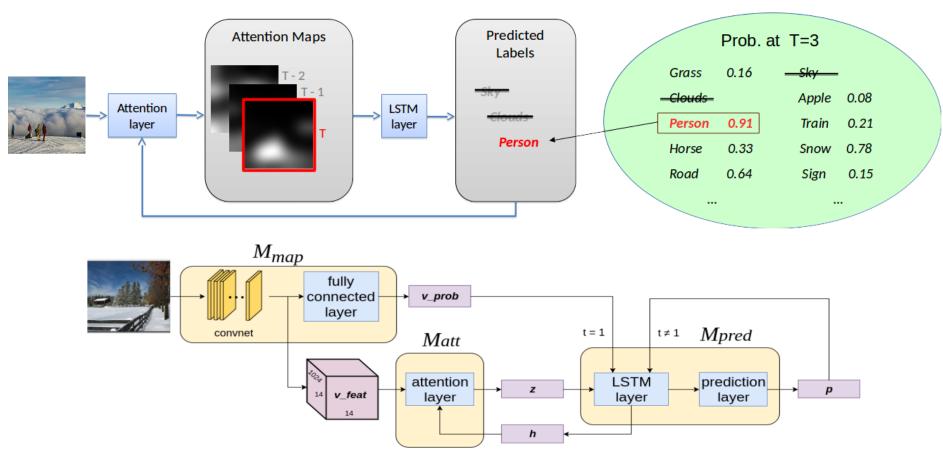
Multi-Label Classification for Image Analysis

- Prediction of multiple object labels from an image
 - Learning across image and semantics domains
 - No object detectors available
 - Desirable if be able to exploit label co-occurrence info



Labels:

Person
Table
Sofa
Chair
TV
Lights
Carpet


DNN for Multi-Label Classification

- Canonical-Correlated Autoencoder (C2AE) [Wang et al., AAAI 2017]
 - Unique integration of autoencoder & deep canonical correlation analysis (DCCA)
 - Autoencoder: label embedding + label recovery + label co-occurrence
 - DCCA: joint feature & label embedding
 - Can handle missing labels during learning

Order-Free RNN with Visual Attention for Multi-Label Classification [AAAI'18]

Visual Attention for MLC [Wang et al., AAAI'18]

Order-Free RNN with Visual Attention for Multi-Label Classification

- Experiments
 - NUS-WIDE: 269,648 images with 81 labels
 - MS-COCO: 82,783 images with 80 labels
- Quantitative Evaluation

NUS-WIDE

Method	C-P	C-R	C-F1	O-P	O-R	O-F1
KNN	32.6	19.3	24.3	43.9	53.4	47.6
Softmax	31.7	31.2	31.4	47.8	59.5	53.0
WARP	31.7	35.6	33.5	48.6	60.5	53.9
CNN-RNN	40.5	30.4	34.7	49.9	61.7	55.2
Resnet-baseline	46.5	47.6	47.1	61.6	68.1	64.7
Frequency-first (w/ atten)	48.9	48.7	48.8	62.1	69.4	65.5
Rare-first (w/ atten)	53.9	51.8	52.8	55.1	65.2	59.8
Ours (w/o atten)	60.8	49.5	54.5	68.3	72.4	70.2
Ours	59.4	50.7	54.7	69.0	71.4	70.2

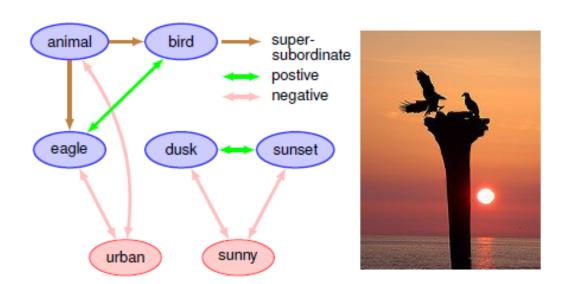
MS-COCO

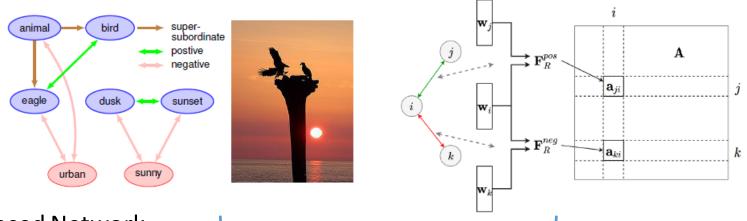
Method	C-P	C-R	C-F1	O-P	O-R	<u>O-F1</u>
			58.0			
WARP	59.3	52.5	55.7	59.8	61.4	60.7
CNN-RNN	66.0	55.6	60.4	69.2	66.4	67.8
			53.4			
Frequency-first (w/ atten)						
,			58.0			
Ours (w/o atten)	69.9	52.6	60.0	73.4	60.3	66.2
Ours	71.6	54.8	62 .1	74.2	62.2	67.7

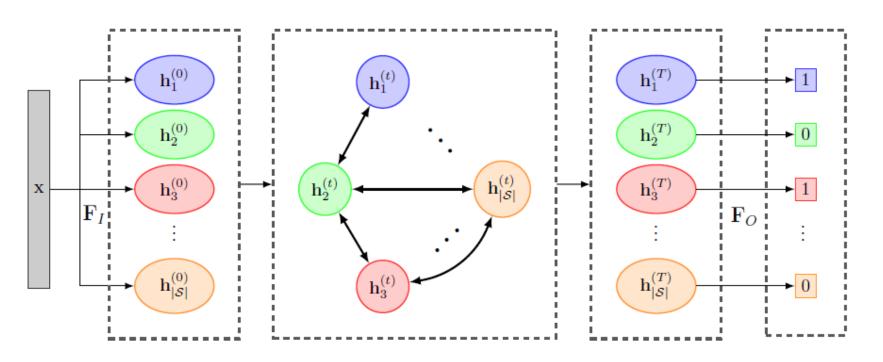
Order-Free RNN with Visual Attention for Multi-Label Classification

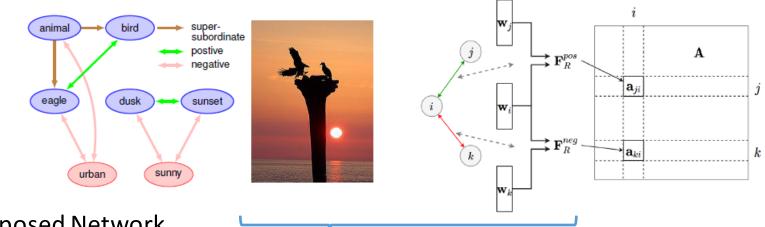
Qualitative Evaluation

Example images in MS-COCO with the associated attention maps




Incorrect predictions with reasonable visual attention


Multi-Label Zero-Shot Learning with Structured Knowledge Graphs [CVPR'18]


Utilizing structured knowledge graphs for modeling label dependency

• Our Proposed Network

• Our Proposed Network

Order-Free RNN with Visual Attention for Multi-Label Classification

- Experiments
 - NUS-WIDE: 269,648 images with 1000 labels
 - MS-COCO: 82,783 images with 80 labels
- Quantitative Evaluation
 - ML vs. ML-ZSL vs. Generalized ML-ZSL

	NUS-81			MS-COCO			
Method	P	R	F1	P	R	F1	
WSABIE	30.7	52.0	38.6	59.3	61.3	60.3	
WARP	31.4	53.3	39.5	60.2	62.2	61.2	
Logistics	41.9	46.2	43.9	70.8	63.3	66.9	
Fast0Tag	31.9	54.0	40.1	60.2	62.2	61.2	
Ours	43.4	48.2	45.7	74.1	64.5	69.0	

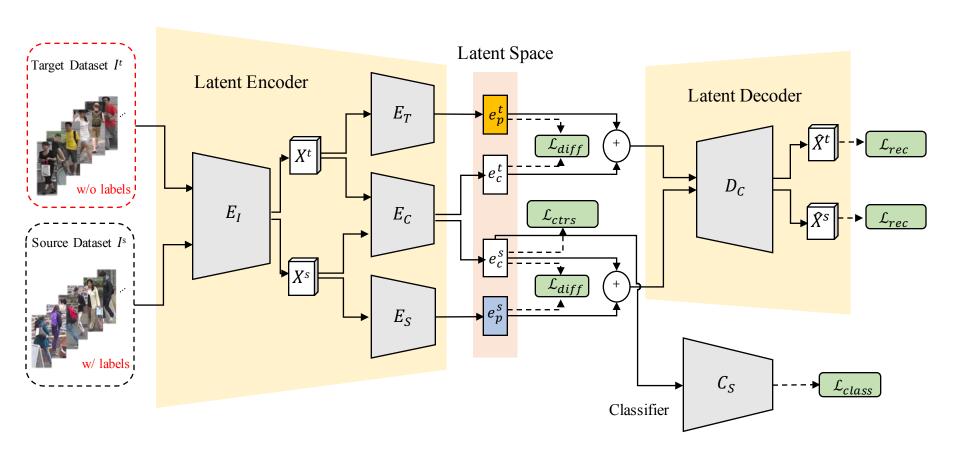
	ML-ZSL			G	eneraliz	ed
Method	P	R	F1	P	R	F1
Fast0Tag ($K=3$)	21.7	37.7	27.2	-	-	-
Fast0Tag ($K = 10$)	-	-	-	19.5	24.9	21.9
Ours w/o Prop.	31.8	25.1	28.1	24.3	23.4	23.9
Ours	29.3	31.9	30.6	22.8	25.9	24.2
	•			•		

Recent Research Focuses on Transfer Learning

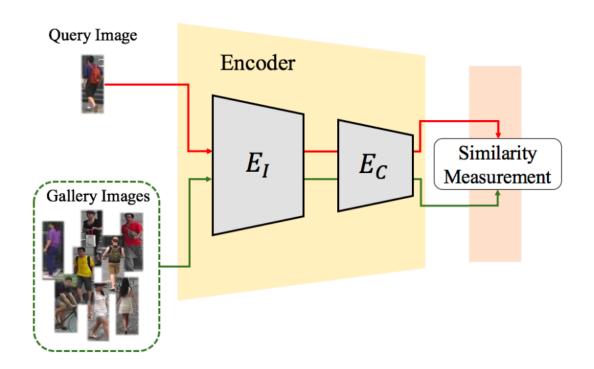
- CVPR 2018
 Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation
- AAAI 2018
 Order-Free RNN with Visual Attention for Multi-Label Classification
- CVPR 2018
 Multi-Label Zero-Shot Learning with Structured Knowledge Graphs
- CVPRW 2018
 Unsupervised Deep Transfer Learning for Person Re-Identification

Introduction: Person re-identification

Camera #1


Camera #3

Camera #2


Camera #4

Person re-identification task: the system needs to **match** appearances of a **person of interest** across **non-overlapping** cameras.

Adaptation & Re-ID Network

Testing Scenario

Comparisons with Recent Re-ID Methods

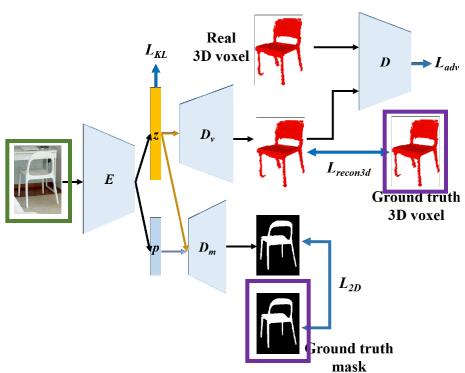
Table 3: Performance comparisons on Market-1501 with supervised and unsupervised Re-ID methods.

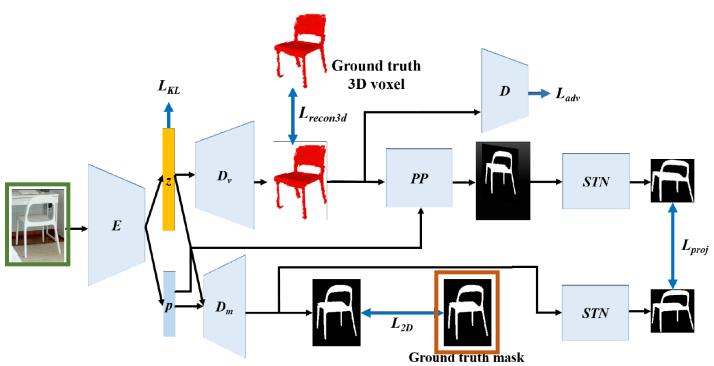
	Method	Rank-1	Rank-5	Rank-10	mAP
	BOW [20]	44.4	-	-	20.8
eq	LDNS [19]	61.0	-	-	35.7
vis	SVDNET [15]	82.3	-	-	62.1
Supervised	TriNet [7]	84.9	-	-	69.1
Su	CamStyle [23]	89.5	-	-	71.6
	DuATM [14]	91.4	-	-	76.6
	BOW [20]	35.8	52.4	60.3	14.8
sec	UMDL [13]	34.5	52.6	59.6	12.4
ırvi	PUL [4]	45.5	60.7	66.7	20.5
dn	CAMEL [18]	54.5	-	-	26.3
Unsupervised	SPGAN [3]	57.7	75.8	82.4	26.7
	Ours	70.3	80.4	86.3	39.4

Table 4: Performance comparisons on DukeMTMC-reID with supervised and unsupervised Re-ID methods.

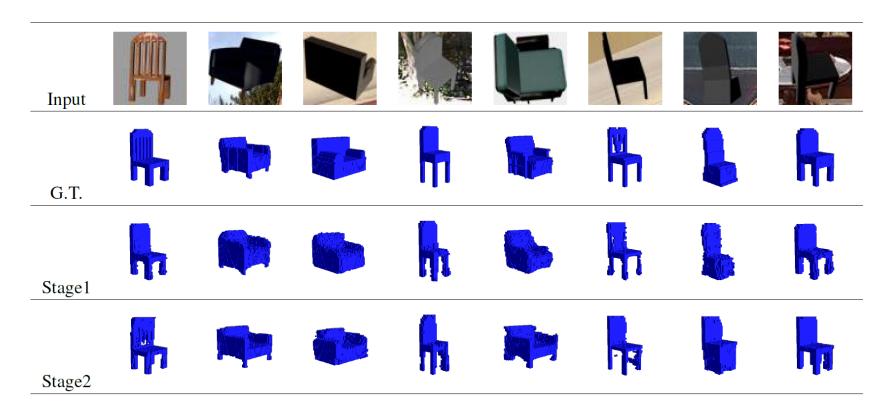
	Method	Rank-1	Rank-5	Rank-10	mAP
	BOW [20]	25.1	-	-	12.2
eq	LOMO [8]	30.8	-	-	17.0
Supervised	TriNet [7]	72.4	-	-	53.5
per	SVDNET [15]	76.7	-	-	56.8
Suj	CamStyle [23]	78.3	-	-	57.6
	DuATM [14]	81.8	-	-	64.6
pa	BOW [20]	17.1	28.8	34.9	8.3
vis(UMDL [13]	18.5	31.4	37.6	7.3
per	PUL [4]	30.0	43.4	48.5	16.4
Unsupervised	SPGAN [3]	46.4	62.3	68.0	26.2
	Ours	60.2	73.9	79.5	33.4

Recent Research Focuses on Transfer Learning

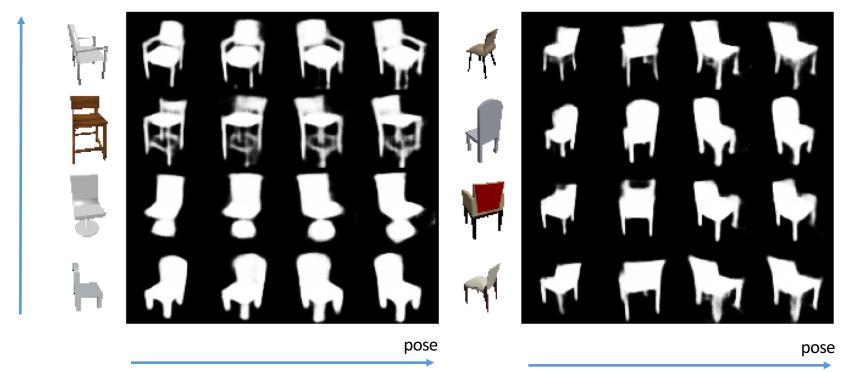

- AAAI 2018
 Order-Free RNN with Visual Attention for Multi-Label Classification
- CVPR 2018
 Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation
- CVPR 2018
 Multi-Label Zero-Shot Learning with Structured Knowledge Graphs
- CVPRW 2018
 Unsupervised Deep Transfer Learning for Person Re-Identification


Other Ongoing Research Topics

- Take a Deep Look from a Single Image
 - Single-Image 3D Object Model Prediction
 - Completing Videos from a Deep Glimpse


- Recovering Shape from a Single Image
 - Supervised Setting
 - Input image and its ground truth 3D voxel available for training

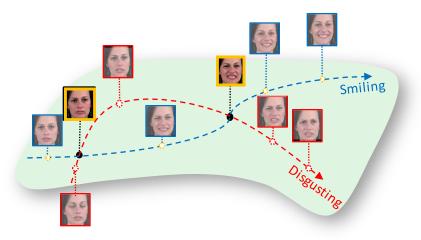
- Recovering Shape from a Single Image
 - Semi-Supervised Setting
 - Input image and its ground truth 2D mask available for training



Example Results

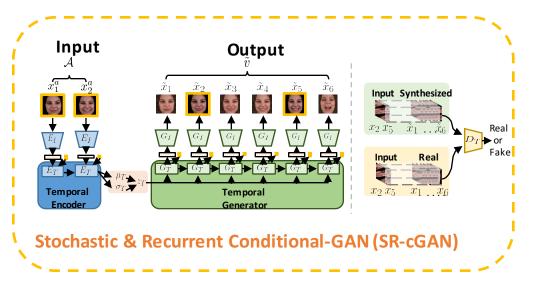
Example Results

Chair



Recent Research Focuses

- Take a Deep Look from a Single Image
 - Single-Image 3D Object Model Prediction
 - Completing Videos from a Deep Glimpse


What's Video Completion?

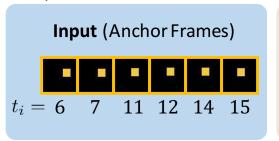
From Video Synthesis to Completion

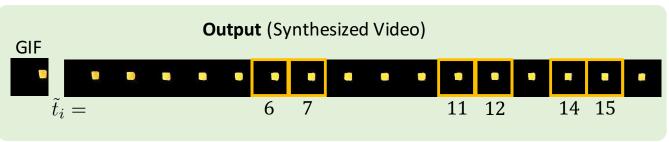
- Our Proposed Network
 - Variational autoencoder, recurrent neural nets, and GAN

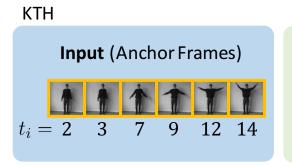
Input: non-consecutive frames of interest
Output: video sequence
(more than one possible output)

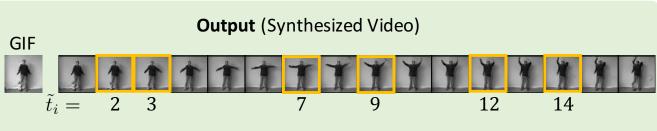
Three Stages in Learning

- 1. Learning frame-based representation
- 2. Learning video-based representation
- 3. Learning video representation conditioned on input anchor frames

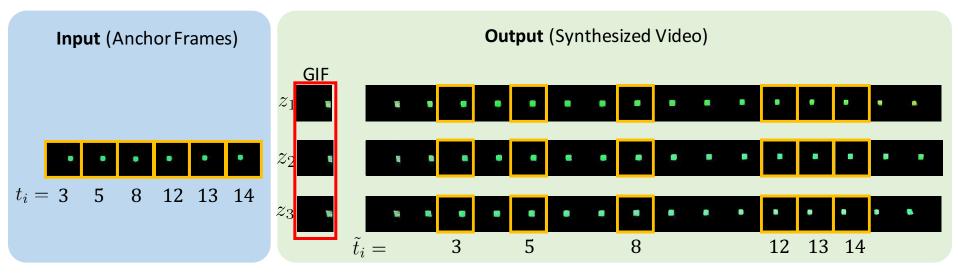

Video Synthesis

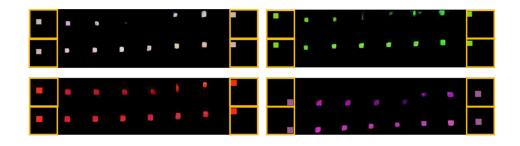

ACD	Shape Motion	Facial Expressions
Reference	0	0.116
VGAN [1]	5.02	0.322
TGAN[2]	2.08	0.305
MoCoGAN [3]	1.79	0.201
Ours	1.05	0.137

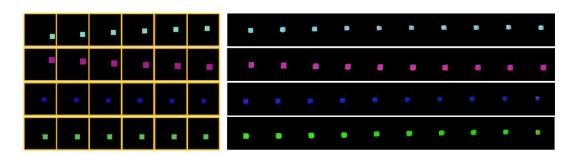



Video Completion – Example Results

Shape Motion




Video Completion - Stochasticity


Different Motion

Video Interpolation & Prediction

- Interpolation
 - Input:
 - 2 anchor frames
 - fixed on t=1 and 8
 - Output 8 frames

- Prediction
 - Input:
 - 6 anchor frames
 - Fixed on $t=1^{6}$
 - Output 16 frames

Summary

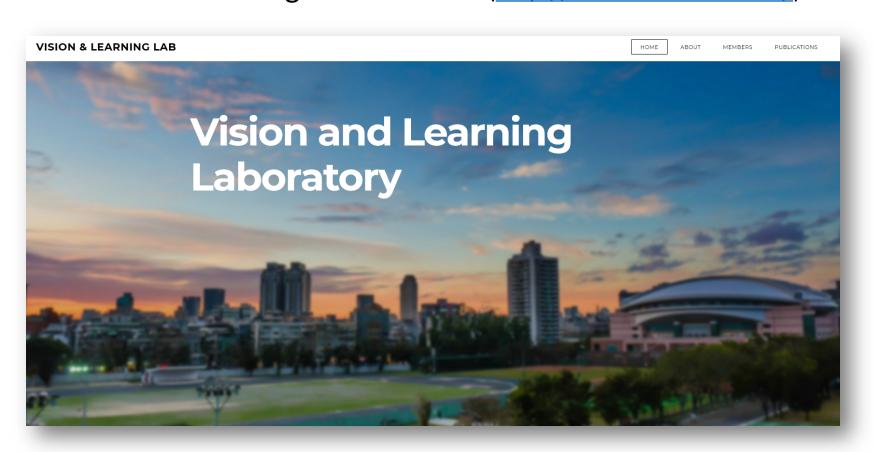
- Deep Transfer Learning for Visual Analysis
 - Multi-Label Classification for Image Analysis
 - Detach and Adapt Beyond Image Style Transfer
 - Single-Image 3D Object Model Prediction
 - Completing Videos from a Deep Glimpse

Sketch

Photo

Person
Table
Sofa
Chair
TV
Lights
Carpet

•••



For More Information...

Vision and Learning Lab at NTUEE (http://vllab.ee.ntu.edu.tw/)

Thank You!