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Deep Feedforward Generative Models

* A generative model is a model for randomly generating data.

* Many deep learning-based generative models exist including
Restrictive Boltzmann Machine (RBM), Deep Boltzmann Machines
(DBM), Deep Belief Networks (DBN) ....

* We will focus on deep feedforward generative models.

* We will focus on models that maps a random sample z from a
parametric probability distribution to an image x.
* Variational Autoencoders (Kingma and Welling 2014)

* Generative Adversarial Networks (Goodfellow et al 2014)
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Comparison
Model Input Output Operation
Deep Feedforward * Image e A probability e “Compression”
Discriminative * High-dimensional distribution of * Many down-
Networks class labels sampling
* Low-dimensional operations

Deep Feedforward ¢ Random sample < A probability  “Decompression”
Generative from a parametric distribution of * Many up-
Networks probabilistic images sampling

distribution * High-dimensional operations

* Low-dimensional
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Manifold Hypothesis

e Structured high-dimensional data (images) live in a low-dimensional

MNIST:

manifold.
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Image credit Goodfellow et al 2016



2 NVIDIA.

Autoencoder Latent
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Encoder Network: 5™ (x;) Decoder Network: f§¢(z;)

Learning is usually done by solving mein Yx.epllfo(x) — x;ll5
where fo(x;) = f5'*“ (fg™ (x))



Remarks on Autoencoder

One of the architectures that led to the
renaissances of neural networks in 2007.

In order to avoid learning a trivial identify function,
the input sample is noise corrupted.
Denoising Autoencoder (Vincent et al 2010)

The hierarchical representation learned in the
encoder can be used as a feature extractor for a
supervised learning task.

However, difficult to sample from the latent space.

Poor generalization: the decoder often just
remember the input samples.

NVIDIA.
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Variational Autoencoder

Put a constraint on the latent space to make sampling easier.

Constraint the encoder to output a conditional Gaussian distribution for an input sample x;

fo (i) = qo(zlx;) = N (z|pg (x;), 1)

The decoder reconstructs the input from a random sample from the conditional distribution
zi~qq(z|x;)

8¢ (z;) = po(xilzi~qe(zlx)))

Train the encoder to output a zero mean Gaussian distribution and the decoder to reconstruct the input.
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Variational Lower Bound

L®ID) = ) 10g(s(x))

Xi€D
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Xi€D z

_ Z Z ” (le)log(pe(z, X) qe(ZIx))
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= LyOID) + ) Dy (a9 (1) P (1))

Xi€D

> Ly (6|D
v(61D) Ly (8|D) is the variational lower bound of the

log-likelihood function L(68|D).
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Maximize the Variational Lower Bound

Ly®ID) = ) > qa(zlx)log (gz gljg)

Xi€D z

= ). ) do(zlx)log (pg(x|z)p(z)>
o ’ qe(z|x)
=);qu(zlx)log< e )> qu(zlx) log(pg (x]2))
— 2 —Di1(qe(z|X)||p(2)) + EZi~CI9(Z|Xi) log(pe(x|zi))
x;ED

Regularization Reconstruction

1 2
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Implementation of VAE

* D (N (zlpg(x), D) [IV(z|0,1) ) = %Zd(.’id,e(xi))z
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2
* Sample approximation Ezi~q9(z|xi)[108(p9 (x]z))] = %Zfﬂ% ”fedec (Zi(l)) — X; ”2

where Zi(l) = qg(z|x;) + €D and eD~ N (0,1)
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Encoder Network: f5™(x;)
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Conditional Variational Autoencoder
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Code or attributes

Kingma et al. “Semi-supervised learning with deep generative models.” NIPS 2014



Attribute2lmage

Male, No eyewear, Frowning, _ _
Receding hairline, Bushy eyebrow, Wing_color:black, Prlmary_color:yellow,
Attributes 7 Eyes open, Pointy nose, Teeth not Breast_color:yellow, Primary_color:black,

| visible, Rosy cheeks, Flushed face Wing_pattern:solid

Nearest
Neighbor

Vanilla
CVAE

disCVAE
(foreground)

disCVAE
(full)

13

Yan et al “Attribute2Image: Conditional Image Generation from Visual Attribute” ECCV 2016



Drawback of VAE

Euclidean loss is not a good
perceptual loss.

Regress to the mean and render
blurry images

Difficult to hand-craft a good
perceptual loss function.

Why not learn one?

Reference

NVIDIA.
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Euclidean Loss
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100 150 200
Translation in pixels

The blue curve plots the Euclidean loss
between a reference image and its
translations. The red bar is the Euclidean loss
between the reference image and a
background image. The Euclidean loss suggests
that the background image is more similar to
the reference image.
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Generative Adversarial Networks

* Forget about how to design an image similarity loss. Let use a deep feedforward
discriminative network to verify if a generated image is similar to a real image. (Goodfellow
et al 2014)

N
X< I X
A GRY ‘4"'

Generator/Decoder Network: fq‘bgen(zi)

True or
Fake
image

/

Discriminator Network: f(pdis(xl-)

Goodfellow et al “Generative Adversarial Networks” NIPS 2014 "



@2/ nVIDIA.

Generative Adversarial Networks

e Generator: map a random sample from a Gaussian distribution to an image.

* Discriminator: Differentiate a generated image from a real image.

‘\V/ -

A’\ ‘z;gg ‘4&? True or
NG AL _ [N N\g/ =
\ ‘ Y ‘ ) > ‘\ \ )

Discriminator Network: f(pdis(xl-)

Generator/Decoder Network: fq‘bgen(zi)
16
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Generative Adversarial Networks

* The generator and the discriminator is playing a zero-sum game.

. mqbin m(ng ExNPdata(x) [lOg f(PdiS (x)]+EZ~pZ(Z) [log(l - ngdiS (fd;gen (Z)))]
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Image credit Goodfellow et al 2014




NVIDIA.

Generative Adversarial Networks

* What does this optimization do?

Pdata(X)
Pdata(X) +f£en(z).

mqbin m(PaX Ex~pdata(x) [lOg f‘PdiS (x)]+EZ~pZ(Z) [log(l - gOdiS (fd;gen (Z)))]

* For a fixed generator fq‘bgen(z), the optimal discriminator is £ (x) =

— minE | Paata(®) |, 1 fo (@)
— g7 P Paata®) [O8 T @) | TPz |08 p a0+ T ()
_ Pdata()+fg  (2) Pdata()+fg  (2)
= min Dyt (Paara ()| D (f " DI =) ~ log(4)

— m(gnD]S(pdata (x)| |f¢;qen(z)) — log(4)

Jensen-Shannon Divergence
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Generative Adversarial Network Training

’ V((p’ ¢) = Ex"’pdata(x) [lOg f(PdiS (x)]+EZ~pZ(Z) [lOg(l B (pdis (‘qugen(Z)))]
* min max V (¢, ¢)

¢ o
* Alternating gradient descent

* Fix ¢ (generator), apply a stochastic gradient ascent step on V (¢, ¢).
* Fix ¢ (discriminator), apply a stochastic gradient descent step on V (¢, ¢).
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Deep Convolutional Generative Adversarial

Networks

_ Stride 2 16
Project and reshape

CONV 2

G(2)

20
Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Deep Convolutional Generative Adversarial

Networks
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Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Deep Convolutional Generative Adversarial

Networks
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Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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INnfoGAN: Interpretable Representation Learning by
Information Maximizing GAN

NN

True or
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I In addition to the adversarial loss, InfoGAN also maximizes I(c; ffen(z, c))

dis,c gen

which is done by maximizing I(c, f, " (x)) < I(c; 1 (z,¢0))
(Check out the data processing lemma in information theory)

C

Chen et al. “InfoGAN: Interpretable Representation Learning by s
Information Maximizing Generative Adversarial Nets”, NIPS 2016
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INnfoGAN: Interpretable Representation Learning by
Information Maximizing GAN
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(c) Vary 2 from —2 to 2 on InfoGAN (Rotation) (d) Varying c3 from —2 to 2 on InfoGAN (Width)

Chen et al. “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets”, NIPS 2016



INnfoGAN: Interpretable Representation Learning by

Information Maximizing GAN

(c) Lighting

Chen et al. “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets”, NIPS 2016
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VAE and GAN Comparison

Optimization Image Quality Generalization
Variational e Stochastic e Smooth  Tendto
Autoencoders (VAE) gradient descent ¢ Blurry remember input
 Converge to local images
minimum
* Easier
Generative e Alternating * Sharp * Generate new
Adversarial stochastic e Artifact unseen images
Networks (GAN) gradient descent
* Converge to
saddle points
 Harder
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VAE/GAN Model

Prior Loss Content Loss
VAE VAE A Discriminator | X
X Encoder Z Decoder X as Feature f( )
Extractor
Weight-sharing Weight-sharing
Style Loss
~ GAN £ GAN Fal
Generator Discriminator atse
X — — True

27
Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016
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VAE/GAN Model

VAE
VAEDisl

VAE/GAN

28
Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016
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VAE/GAN Model

Figure 5. Using the VAE/GAN model to reconstruct dataset samples with visual attribute vectors added to their latent representations.

29
Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016
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Applications

* Image Superresolution
* Inpainting

* Image Editing

* Domain Adaptation
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Application: Image Super-resolution

Minimize
Generator Network ; i
SIS DRSS * Adversarial Loss
n64s1  nb4sl  nbasT ' n64s0.5 n64s0.5 n3si * Content Loss
R - — * TV-norm
—
o
Discriminator Network s Pl S Mt
n64s1 n64s2 n128s1 n128s2 n256s1 n256s2 n512s1 n512s2

"pixel-wise average
f possible solutions”

I
|

41024)

T
Leaky RelLU
Leaky RelU
T
Dense (1)

Leaky ReLU

[a4]

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480
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| Dense

I
|




<

Application: Image Super-resolution

original bicubic SRResNet SRGAN

(21.59dB/0.6423) (23.44dB/0.7777) (20.34dB/0.6562)

PSNR/SSIM

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480



Application: Image Super-resolution

original HR image SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480
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Image Inpaiting
Let X be a corrupted images. By solving z* = argminlog(1 — f*(f]" (2)) + ||M®que"(z) — M@f”j

We can get the inpainted image by

x = fJ"(z")

Inpainted images w/wo perceptual loss

Yeh et al, “Semantic Image Inpainting with Perceptual and Contextual Losses” arXiv 1607.07539
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Generative Visual Manipulation on the
Natural Image Manitfold

(P4 P4 A

(a) User constraints v, at different update steps

FTrrr.

(b) Updated images according to user edi-ts G(z,)

& s
= | | S o~ - . // {‘

SN “d
(¢) Linear interpolation between G (z,) and G (z;)
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35
Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016
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Generative Visual Manipulation on the
Natural Image Manitfold

Let x, be an input image. Find the hidden code that the generator would use

Zg = argmin L(xq, G(2))
Z
The user then made some edits. The edits are given as constraints. We then solve the

optimization problem for find a new hidden code that resembles the original image
while satisfying the constraints by solving

2 =argmin Y [1£,(G(2) = gl + M 2 = 20+ Ap - log(1 = D(G(2)))
g

z€e/L

~
< _ manifold Perceptual loss
g smoothness P
data term

Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016
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Generative Visual Manipulation on the
Natural Image Manifold

Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016
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Coupled Generative Adversarial Networks

Learn joint distribution of multi-domain images without any corresponding images in
the different domains.

color
image ]
thermal . cool 5
image | hot \ L
!

Scene

depth . D near A L \

, Image plane
image
8 . far Camera

* p(X1,X5, ..., Xy): where X; are images of the scene in different modalities.

* Ex. p(Xcotors Xthermats Xdepth):

38
Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016



Coupled Generative Adversarial Networks

* Define domain by attribute.
* Multi-domain images are views of an object with different attributes.

et 7825
S &t

Font#l Font#2

Non-beard Beard Young Senior

summer winter

images Hand-drawings

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Coupled Generative Adversarial Networks

‘ \ D, : Dataset of training images in Domain 1

GAN1

z~p(z) =

A 4

X1

Weightg sharing

GAN?2

o>

N

A 4

92

92(2)

A\ 4

"

f1(912)

—0

f1(x)

Weighté sharing

\ 4

X,

A\ 4

f2(922))

—O

f2(%)

Ej D, : Dataset of training images in Domain 2

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Table 1: Numbers of training images in Domain 1 and Domain 2 in the MNIST experiments.

Task A Task B
Pair generation of digits and  Pair generation of digits and
corresponding edge images  corresponding negative images
# of images in Domain 1 30,000 30,000
# of images in Domain 2 30,000 30,000
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Figure 3: Training images from the RGBD dataset [3].

Table 3: Numbers of RGB and depth training images in the RGBD experiments.

# of RGB images 125,000
# of depth images 125,000

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarlal Networks” 7@_
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Figure 4: Training images from the NYU dataset [4].

Table 4: Numbers of RGB and depth training images in the NYU experiments.

# of RGB images 514,192
# of depth images 1,449

44
Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016



Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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A

Figure 2: Training images from the Celeba dataset [2].

Table 2: Numbers of training images of different attributes in the pair face generation experiments.

Attribute Smiling  Blond hair ~ Glasses
# of images with the attribute 97,669 29983 13,193
# of images without the attribute 104,930 172,616 189,406

47
Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016



Application: Unsupervised Domain

Adaptation

GAN1

z~p(z)

GAN2

"

>

\ 4

D, : Dataset of training
images in Domain 1

NVIDIA.

Class label

»
>

OO0

weighté sharing

o>

&

\ 4

(X1,Y)
f1(91@)
> > > —o—> ——( )
91(2) 5
_ f1(0)
weighté sharing
92(2) _ f2(92)
> > PN PN —( )
f2(%)
X2
— D, : Dataset of training
images in Domain 2
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Unsupervised Domain Adaptation

QIS AEE 0 /(2] 3 |4]5]6]7] 519
Ol NN 6 IS

ranassca SNEENNAANE
2 AR Ci AT
ZNasHaEEn CONRBLEGEGD
SvasEvarnsy SHEEREEMNE

(a) USPS (b) MNIST

Task \ Method [18] [19] [20] [21] CoGAN
MNIST—USPS 0408 0.467 0478 0.607 0.912 +0.008
USPS—MNIST 0.274 0.355 0.631 0.673 0.891 +0.008

Average 0.341 0.411 0.554 0.640 0.902

55

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Conclusions

* We discussed two popular deep generative models
 Variational Autoencoders
* Generative Adversarial Networks

* We discussed their pros and cons and how to take the best from
both.

* We discussed several computer vision applications of these models.

* Many other applications and interesting properties of these deep
generative models are waiting for your exploration.



