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Deep Feedforward Generative Models

• A generative model is a model for randomly generating data. 

• Many deep learning-based generative models exist including 
Restrictive Boltzmann Machine (RBM), Deep Boltzmann Machines 
(DBM), Deep Belief Networks (DBN) ….

• We will focus on deep feedforward generative models.

• We will focus on models that maps a random sample z from a 
parametric probability distribution to an image 𝑥.

• Variational Autoencoders (Kingma and Welling 2014)

• Generative Adversarial Networks (Goodfellow et al 2014)

2



Comparison

3

Deep Feedforward 
Discriminative

Network

Formosan Mountain Dog

Husky

Persian cat

Deep Feedforward 
Generative

Network



Comparison

Model Input Output Operation

Deep Feedforward 
Discriminative 
Networks

• Image
• High-dimensional

• A probability
distribution of 
class labels

• Low-dimensional

• “Compression”
• Many down-

sampling 
operations

Deep Feedforward 
Generative 
Networks

• Random sample 
from a parametric 
probabilistic 
distribution

• Low-dimensional

• A probability 
distribution of 
images

• High-dimensional

• “Decompression”
• Many up-

sampling
operations
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Manifold Hypothesis

• Structured high-dimensional data (images) live in a low-dimensional 
manifold.
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Autoencoder
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Decoder Network:  𝑓𝜃
𝑑𝑒𝑐 𝑧𝑖Encoder Network: 𝑓𝜃

𝑒𝑛𝑐 𝑥𝑖

Learning is usually done by solving   m𝑖𝑛
𝜃

σ𝑥𝑖∈𝐷
𝑓𝜃 𝑥𝑖 − 𝑥𝑖 2

2

where   𝑓𝜃 𝑥𝑖 = 𝑓𝜃
𝑑𝑒𝑐(𝑓𝜃

𝑒𝑛𝑐 𝑥𝑖 )

Latent 
representatio
n: 𝑧𝑖



Remarks on Autoencoder

• One of the architectures that led to the 
renaissances of neural networks in 2007.

• In order to avoid learning a trivial identify function, 
the input sample is noise corrupted.  
Denoising Autoencoder (Vincent et al 2010)

• The hierarchical representation learned in the 
encoder can be used as a feature extractor for a 
supervised learning task.

• However, difficult to sample from the latent space. 

• Poor generalization: the decoder often just 
remember the input samples.
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Variational Autoencoder

• Put a constraint on the latent space to make sampling easier.

• Constraint the encoder to output a conditional Gaussian distribution for an input sample 𝑥𝑖

𝑓𝜃
𝑒𝑛𝑐 𝑥𝑖 = 𝑞𝜃 𝑧 𝑥𝑖 = 𝒩 𝑧 𝜇𝜃 𝑥𝑖 , 𝐼

• The decoder reconstructs the input from a random sample from the conditional distribution 
𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖

𝑓𝜃
𝑑𝑒𝑐 𝑧𝑖 = 𝑝𝜃(𝑥𝑖|𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖 )

• Train the encoder to output a zero mean Gaussian distribution and the decoder to reconstruct the input.

min
𝜃

෍

𝑥𝑖∈𝐷

𝐷𝐾𝐿(𝒩(𝑧|𝜇𝜃 𝑥𝑖 , 𝐼) ||𝒩 𝑧 0, 𝐼 ) + 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖
1

2
𝑓𝜃
𝑑𝑒𝑐 𝑧𝑖 − 𝑥𝑖

2

2
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Variational Lower Bound
𝐿 𝜃 𝐷 = ෍

𝑥𝑖∈𝐷

log(𝑝𝜃 𝑥 )

= ෍

𝑥𝑖∈𝐷

෍

𝑧

𝑞𝜃(𝑧|𝑥)log(𝑝𝜃 𝑥 )

= ෍

𝑥𝑖∈𝐷

෍

𝑧

𝑞𝜃(𝑧|𝑥)log(
𝑝𝜃(𝑧, 𝑥)

𝑝𝜃(𝑧|𝑥)
)

= ෍

𝑥𝑖∈𝐷

෍

𝑧

𝑞𝜃(𝑧|𝑥)log(
𝑝𝜃(𝑧, 𝑥)

𝑞𝜃(𝑧|𝑥)

𝑞𝜃(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)
)

= ෍

𝑥𝑖∈𝐷

෍

𝑧

𝑞𝜃 𝑧 𝑥 log
𝑝𝜃 𝑧, 𝑥

𝑞𝜃 𝑧 𝑥
+෍

𝑧

𝑞𝜃 𝑧 𝑥 log 𝑞𝜃 𝑧 𝑥 log
𝑞𝜃(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐿𝑉 𝜃 𝐷 + ෍

𝑥𝑖∈𝐷

𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑝𝜃(𝑧|𝑥))

≥ 𝐿𝑉 𝜃 𝐷
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𝐿𝑉 𝜃 𝐷 is the variational lower bound of the 
log-likelihood function 𝐿 𝜃 𝐷 . 



Maximize the Variational Lower Bound

𝐿𝑉 𝜃 𝐷 = ෍

𝑥𝑖∈𝐷

෍

𝑧

𝑞𝜃 𝑧 𝑥 log
𝑝𝜃 𝑧, 𝑥

𝑞𝜃 𝑧 𝑥

= ෍

𝑥𝑖∈𝐷

෍

𝑧

𝑞𝜃 𝑧 𝑥 log
𝑝𝜃 𝑥|𝑧 𝑝(𝑧)

𝑞𝜃 𝑧 𝑥

= ෍

𝑥𝑖∈𝐷

෍

𝑧

𝑞𝜃 𝑧 𝑥 log
𝑝(𝑧)

𝑞𝜃 𝑧 𝑥
+෍

𝑧

𝑞𝜃 𝑧 𝑥 log 𝑝𝜃 𝑥|𝑧

= ෍

𝑥𝑖∈𝐷

−𝐷𝐾𝐿(𝑞𝜃 𝑧 𝑥 ||𝑝(𝑧)) + 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖 [log 𝑝𝜃 𝑥|𝑧𝑖 ]
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max
𝜃

𝐿𝑉 𝜃 𝐷 ⟺ min
𝜃

෍

𝑥𝑖∈𝐷

𝐷𝐾𝐿(𝒩(𝑧|𝜇𝜃 𝑥𝑖 , 𝐼) ||𝒩 𝑧 0, 𝐼 ) + 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖
1

2
𝑓𝜃
𝑑𝑒𝑐 𝑧𝑖 − 𝑥𝑖

2

2

Regularization Reconstruction



Implementation of VAE
• 𝐷𝐾𝐿(𝒩(𝑧|𝜇𝜃 𝑥𝑖 , 𝐼) | 𝒩 𝑧 0, 𝐼 =

1

2
σ𝑑(𝜇𝑑,𝜃 𝑥𝑖 )

2

• Sample approximation 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖 log 𝑝𝜃 𝑥|𝑧𝑖 ≈
1

𝐿
σ𝑙=1
𝐿 1

2
𝑓𝜃
𝑑𝑒𝑐 𝑧𝑖

𝑙
− 𝑥𝑖

2

2

where 𝑧𝑖
𝑙
= 𝑞𝜃 𝑧 𝑥𝑖 + 𝜀(𝑙) and 𝜀(𝑙)~𝒩(0, 𝐼)

11Encoder Network: 𝑓𝜃
𝑒𝑛𝑐 𝑥𝑖 Decoder Network:  𝑓𝜃

𝑑𝑒𝑐 𝑧𝑖

+

+

𝜀2

𝜀1



Conditional Variational Autoencoder
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+

+

𝜀2

𝜀1

Code or attributes

Kingma et al. “Semi-supervised learning with deep generative models.” NIPS 2014



Attribute2Image

13
Yan et al “Attribute2Image: Conditional Image Generation from Visual Attribute” ECCV 2016



Drawback of VAE

• Euclidean loss is not a good 
perceptual loss.

• Regress to the mean and render 
blurry images

• Difficult to hand-craft a good 
perceptual loss function.

• Why not learn one?
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Generative Adversarial Networks
• Forget about how to design an image similarity loss. Let use a deep feedforward 

discriminative network to verify if a generated image is similar to a real image. (Goodfellow
et al 2014) 
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Generator/Decoder Network:  𝑓𝜙
𝑔𝑒𝑛

𝑧𝑖 Discriminator Network: 𝑓𝜑
𝑑𝑖𝑠 𝑥𝑖

True or 
Fake 
image

Goodfellow et al “Generative Adversarial Networks” NIPS 2014



Generative Adversarial Networks
• Generator: map a random sample from a Gaussian distribution to an image.

• Discriminator: Differentiate a generated image from a real image.
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Generator/Decoder Network:  𝑓𝜙
𝑔𝑒𝑛

𝑧𝑖 Discriminator Network: 𝑓𝜑
𝑑𝑖𝑠 𝑥𝑖

True or 
Fake 
image



Generative Adversarial Networks
• The generator and the discriminator is playing a zero-sum game.

• min
𝜙

max
𝜑

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝑓𝜑
𝑑𝑖𝑠 𝑥 +𝐸𝑧~𝑝𝑍(𝑧) log(1 − 𝑓𝜑

𝑑𝑖𝑠 𝑓𝜙
𝑔𝑒𝑛

𝑧 )

17
Image credit Goodfellow et al 2014



Generative Adversarial Networks
• What does this optimization do?

• For a fixed generator 𝑓𝜙
𝑔𝑒𝑛

𝑧 , the optimal discriminator is 𝑓𝜑
𝑑𝑖𝑠 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓
𝜙
𝑔𝑒𝑛

𝑧
.

min
𝜙

max
𝜑

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝑓𝜑
𝑑𝑖𝑠 𝑥 +𝐸𝑧~𝑝𝑍(𝑧) log(1 − 𝑓𝜑

𝑑𝑖𝑠 𝑓𝜙
𝑔𝑒𝑛

𝑧 )

= min
𝜙

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙
𝑔𝑒𝑛

𝑧
+𝐸𝑧~𝑝𝑍(𝑧) log

𝑓𝜙
𝑔𝑒𝑛

𝑧

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙
𝑔𝑒𝑛

𝑧

= min
𝜙

𝐷𝐾𝐿(𝑝𝑑𝑎𝑡𝑎(𝑥)||
𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙

𝑔𝑒𝑛
𝑧

2
)+𝐷𝐾𝐿(𝑓𝜙

𝑔𝑒𝑛
𝑧 ||

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙
𝑔𝑒𝑛

𝑧

2
) − log 4

= min
𝜙
𝐷𝐽𝑆(𝑝𝑑𝑎𝑡𝑎(𝑥)||𝑓𝜙

𝑔𝑒𝑛
𝑧 ) − log(4)

18
Jensen-Shannon Divergence



Generative Adversarial Network Training

• 𝑉 𝜑,𝜙 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝑓𝜑
𝑑𝑖𝑠 𝑥 +𝐸𝑧~𝑝𝑍(𝑧) log(1 − 𝑓𝜑

𝑑𝑖𝑠 𝑓𝜙
𝑔𝑒𝑛

𝑧 )

• min
𝜙

max
𝜑

𝑉 𝜑,𝜙

• Alternating gradient descent

• Fix 𝜙 (generator), apply a stochastic gradient ascent step on 𝑉 𝜑,𝜙 .

• Fix 𝜑 (discriminator), apply a stochastic gradient descent step on 𝑉 𝜑,𝜙 .
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Deep Convolutional Generative Adversarial 
Networks

20
Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



Deep Convolutional Generative Adversarial 
Networks

21
Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



Deep Convolutional Generative Adversarial 
Networks

22
Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



InfoGAN: Interpretable Representation Learning by
Information Maximizing GAN

23
Chen et al. “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets”, NIPS 2016

True or 
Fake 
image

In addition to the adversarial loss, InfoGAN also maximizes 𝐼(𝑐; 𝑓𝜙
𝑔𝑒𝑛

𝑧, 𝑐 )

which is done by maximizing 𝐼(𝑐, 𝑓𝜑
𝑑𝑖𝑠,𝑐 𝑥 ) ≤ 𝐼(𝑐; 𝑓𝜙

𝑔𝑒𝑛
𝑧, 𝑐 )

(Check out the data processing lemma in information theory)𝑐



InfoGAN: Interpretable Representation Learning by
Information Maximizing GAN

24
Chen et al. “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets”, NIPS 2016



InfoGAN: Interpretable Representation Learning by
Information Maximizing GAN

25
Chen et al. “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets”, NIPS 2016



VAE and GAN Comparison
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Model Optimization Image Quality Generalization

Variational
Autoencoders (VAE)

• Stochastic 
gradient descent

• Converge to local 
minimum

• Easier

• Smooth
• Blurry

• Tend to 
remember input 
images

Generative
Adversarial 
Networks (GAN)

• Alternating 
stochastic 
gradient descent

• Converge to 
saddle points

• Harder

• Sharp
• Artifact

• Generate new 
unseen images



VAE/GAN Model

27
Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016

VAE
Encoder

VAE
Decoder𝑥 𝑧 ො𝑥

GAN
Generator𝑧

Weight-sharing

GAN
Discriminator

ො𝑥

𝑥

GAN
Discriminator 

as Feature 
Extractor

𝑇𝑟𝑢𝑒

𝐹𝑎𝑙𝑠𝑒

𝑥

Weight-sharing

Style Loss

Content LossPrior Loss

𝑓(𝑥)

𝑓(ො𝑥)



VAE/GAN Model

28
Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016



VAE/GAN Model

29
Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016



Applications

• Image Superresolution

• Inpainting

• Image Editing

• Domain Adaptation
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Application: Image Super-resolution

31
Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480

Minimize 
• Adversarial Loss
• Content Loss
• TV-norm



Application: Image Super-resolution

32

PSNR/SSIM

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480



Application: Image Super-resolution

33
Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480



Image Inpaiting

34
Yeh et al, “Semantic Image Inpainting with Perceptual and Contextual Losses” arXiv 1607.07539

Let ҧ𝑥 be a corrupted images. By solving

We can get the inpainted image by

𝑥 = 𝑓𝜙
𝑔𝑒𝑛

(𝑧∗)

𝑧∗ = argmin
𝑧

log(1 − 𝑓𝜑
𝑑𝑖𝑠(𝑓𝜙

𝑔𝑒𝑛
𝑧 ) + 𝑀⨀𝑓𝜙

𝑔𝑒𝑛
𝑧 − 𝑀⨀ ҧ𝑥

2

2

Inpainted images w/wo perceptual loss



Generative Visual Manipulation on the 
Natural Image Manifold

35
Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016



Generative Visual Manipulation on the 
Natural Image Manifold

36
Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016

Let 𝑥0 be an input image. Find the hidden code that the generator would use
𝑧0 = argmin

𝑧
𝐿(𝑥0, 𝐺(𝑧))

The user then made some edits. The edits are given as constraints. We then solve the 
optimization problem for find a new hidden code that resembles the original image 
while satisfying the constraints by solving

Perceptual loss



Generative Visual Manipulation on the 
Natural Image Manifold

37
Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016



Scene

Coupled Generative Adversarial Networks

• 𝑝(𝑋1, 𝑋2, … , 𝑋𝑁): where 𝑋𝑖 are images of the scene in different modalities.

• Ex. 𝑝(𝑋𝑐𝑜𝑙𝑜𝑟 , 𝑋𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , 𝑋𝑑𝑒𝑝𝑡ℎ):

color 
image

depth 
image

near

far

thermal 
image

cool

hot

Image plane

Camera

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016

Learn joint distribution of multi-domain images without any corresponding images in 
the different domains.
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Coupled Generative Adversarial Networks

• Define domain by attribute. 

• Multi-domain images are views of an object with different attributes.

Non-smiling Smiling Young SeniorNon-beard Beard

summer winterimages Hand-drawings

Font#1 Font#2

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Coupled Generative Adversarial Networks

GAN1

𝐷1 : Dataset of training images in Domain 1

𝒙𝟏

GAN2

𝐷2 : Dataset of training images in Domain 2

𝒙𝟐

weight  sharing weight  sharing

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
43



NYU

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
53



Application: Unsupervised Domain 
Adaptation

GAN1

𝐷1 : Dataset of training 
images in Domain 1

(𝒙𝟏, 𝑦)

GAN2

𝐷2 : Dataset of training 
images in Domain 2

𝒙𝟐

weight  sharing weight  sharing

Class label



Unsupervised Domain Adaptation

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016
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Conclusions

• We discussed two popular deep generative models
• Variational Autoencoders 

• Generative Adversarial Networks

• We discussed their pros and cons and how to take the best from 
both.

• We discussed several computer vision applications of these models.

• Many other applications and interesting properties of these deep 
generative models are waiting for your exploration.
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