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Fig. 1. Top row: comparing the relative top few nouns (left-panel) and verbs (right-
panel) between VTW and MPII-MD. dataset [1]. Bottom row: comparing the rela-
tive top few nouns (left-panel) and verbs (right-panel) between VTW and M-VAD
dataset [2]. The number 4184 for guy (see top-left corner) means that the word “guy”
appears 4184 more times in VTW than in MPII-MD.
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1 Complementary Vocabulary

The common words are di↵erent in these datasets, since VTW consists of user-
generated-videos and [1,2] consists of movie clips. We visualize the relative top
few nouns and verbs in VTW v.s. MPII-MD. [1] (Fig. 1-Top) and VTW v.s.
M-VAD [2] (Fig. 1-Bottom).

2 Dummy Video Observation

For S2VT, we have tried two di↵erent types of dummy video observation: (1)
single-one, (2) all-zeros. On the whole training and testing dataset, the accuracy
of these two types are reported in Table. 1. Since all-zeros outperforms single-one,
we select all-zeros as our dummy video observation for S2VT.

VTW S2VT [3] (%)
Variant B@1 B@2 B@3 B@4 MET. CIDEr

single-one 11.7 4.9 2.0 0.9 5.6 21.7
all-zeros 11.0 4.7 2.3 1.3 6.0 22.8

Table 1. Video captioning performance of di↵erent types of dummy video observation
on a whole training and testing dataset.

3 Testing-Word-Count-in-Training
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Fig. 2. We show the percentage (y-axis)
of unique words in the test set that ap-
pears zero to five times (x-axis) in train-
ing from left to right. We compare these
statistics on our VTW dataset before
(VTW-title) and after (VTW-Aug.) sen-
tence augmentation. The same compari-
son is done for M-VAD [2] dataset before
(M-VAD) and after ( M-VAD-Aug.) sen-
tence augmentation.

We report the Testing-Word-Count-in-Training (TWCinT) statistics on VTW
and M-VAD dataset before and after sentence augmentation in Table. 2.

4 Our TensorFlow Implementation

We reimplement S2VT [3] and SA [4] using TensorFlow [5]. We follow [3] to
implement sequence to sequence translation between video observations and cor-
responding video title as Fig. 3-Top. For simplification, each LSTM block in the
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Fig. 3. Top figure: it is our implementation of [3]. Note that < pad > means zero-
padding, < BOS > means the start of the sentence, and < EOS > means the end of
the sentence. Bottom figure: it is our implementation of [4]. Note that for each word w,
we recompute soft-attention scores {↵w,t}t and utilize those scores {↵w,t}t to weighted
sum over all clips (indexed by t).

figure is implemented by the standard module in TensorFlow [5]. In order to
separate visual embedding feature and language embedding feature, we follow
[3] to use the all zero vector to implicitly show the absence of each feature.
< BOS > and < EOS > are special one-hot vectors indicating the start of the
sentence and the end of the sentence, respectively. Note that while only a visual
feature channel is shown, we follow [3] to replicate the same architecture with
di↵erent learnable weights and bias for VGG [6] and C3D [7]. Then, a late-fusion
layer is used to combine the results from di↵erent feature sources. On the other
hand, we follow [4] to implement soft-attention model as Fig. 3-Bottom. A single
layer LSTM network is used to generate predicted word at each time step. Note
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that di↵erent from the S2VT model, we follow [4] to early fuse appearance and
motion features by concatenating them.

5 Highlight Detector
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Fig. 4. It is the implementation of our highlight detector. We use a bidirectional single-
layer LSTM model with binary classification strategy to discriminate highlight or non-
highlight for each video. Higher highlight probability means higher chance to be de-
tected as highlight clip.

For highlight detector, we implement a bidirectional single-layer LSTMmodel
with binary classification strategy as Fig. 4. Each clip can be discriminated
as highlight or non-highlight by a softmax function. In the testing phase, our
highlight detector could predict highlight probability for each testing clip1. In
order to verify our setting, we train on 2000 training videos (14.2% of full training
set), select best model on 300 validation videos (15% of full validation set), and
test on whole testing videos. Initially, our highlight detector achieves 54.2%
mean average precision (mAP). When the highlight sensitive video captioner is
trained, we can obtain clip-wise captioning loss by directly feeding each clip into
the captioner. Next, we take the highlight score as the negative of the captioning
loss in the unlabeled training set (12100 videos). We propose to use this clip-wise
highlight score to select additional highlight and non-highlight clips to retrain our
highlight detector. However, since our high capacity bidirectional RNN model
can easily fit to incorrectly selected highlight and non-highlight clips, we only
select a subset of highly confident videos for retraining. We propose to select
videos with a clear single highlight clip for retraining. In detail, we first subtract
the score by the minimum score in each video. Then, we ignore videos having any
local maximum score higher than 10% of global maximum score. All remained
videos are selected into the training set. In each newly selected training video, we

1 Higher highlight probability means higher chance to be detected as highlight.
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treat the clip having the global maximum score be the highlight, ignore the two
clips beside the highlight, and all remaining clips as non-highlights. Finally, we
gain 2731 more training videos and the number of total labeled training videos
increase to 4731. After retraining highlight detector using new training videos,
the final highlight detector has 58.3% mAP on the highlight detection task.

6 Human Evaluation

51%
40%

9%

HUMAN	EVALUATION
Our	is	better S2VT	is	better on	par

Fig. 5. The distribution of human evaluation. The blue segment represents that our
method (HL+Web Aug.) is better, the orange segment represents that S2VT baseline
method is better, and the grey segment represents on par. Our titles outperform S2VT
titles by 11% more (51%� 40%) and human judges decide that 59.5% of our sentences
are on par or better than the S2VT sentences.

We conduct a human evaluation comparing S2VT baseline method and our
method (HL+Web Aug.). Before conducting large-scale human evaluation, we
first randomly sample a few sample titles pairs (S2VT v.s. ours) and ask human
judges to make hard decision from the following three options: “S2VT is better”,
“ours is better”, and “on par”. We found that this is a di�cult hard decision,
when both titles are partially relevant to the video content but in di↵erent ways.
To avoid introducing potential random hard decision by the human judges, we
sort the title pairs according to the smaller METEOR between S2VT title and
our title as follows,

minMETEOR = min(METEOR.S2V T ,METEOR.HL+WebAug.). (1)

Then, we choose the top 1000 videos with higher minMETEOR scores for human
evaluation. We ask seven subjects to conduct blind test which means that all
subjects do not know which sentence is predicted by S2VT or our method. In
the end, among 1000 videos, 508 (51%) videos are selected as “ours is better”,
405 (40%) videos are selected as “S2VT is better”, and the remained 87 (9%)
videos are selected as “on par” (Fig. 5). As a result, our titles outperform S2VT



6 Kuo-Hao Zeng, Tseng-Hung Chen, Juan Carlos Niebles, Min Sun

titles by 11% more (51% � 40%), and human judges decide that 59.5% of our
sentences are on par or better than the S2VT sentences.
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