

How Contexts Matter Understanding in Dialogues

YUN-NUNG (VIVIAN) CHEN

Outline

- Word-Level Contexts in Sentences
 - Learning from Prior Knowledge –
 Knowledge-Guided Structural Attention Networks (K-SAN) [Chen et al., '16]
 - Learning from Observations –
 Modularizing Unsupervised Sense Embedding (MUSE) [Lee & Chen, '17]
- Sentence-Level Contexts in Dialogues
 - Investigation of Understanding Impact –
 Reinforcement Learning Based Neural Dialogue System [Li et al., '17]
- Conclusion

Task-Oriented Dialogue System

- Dialogue systems are intelligent agents that are able to help users finish tasks more efficiently via <u>conversational interactions</u>.
- Dialogue systems are being incorporated into various devices (smartphones, smart TVs, in-car navigating system, etc).

JARVIS - Iron Man's Personal Assistant

Baymax – Personal Healthcare Companion

Context in Language

- Word-level context
 - Prior knowledge such as linguistic syntax
 show me the flights from seattle to san francisco
 - Collocated words

Smartphone companies including apple blackberry and sony will be invited.

Contexts provide informative cues for better understanding

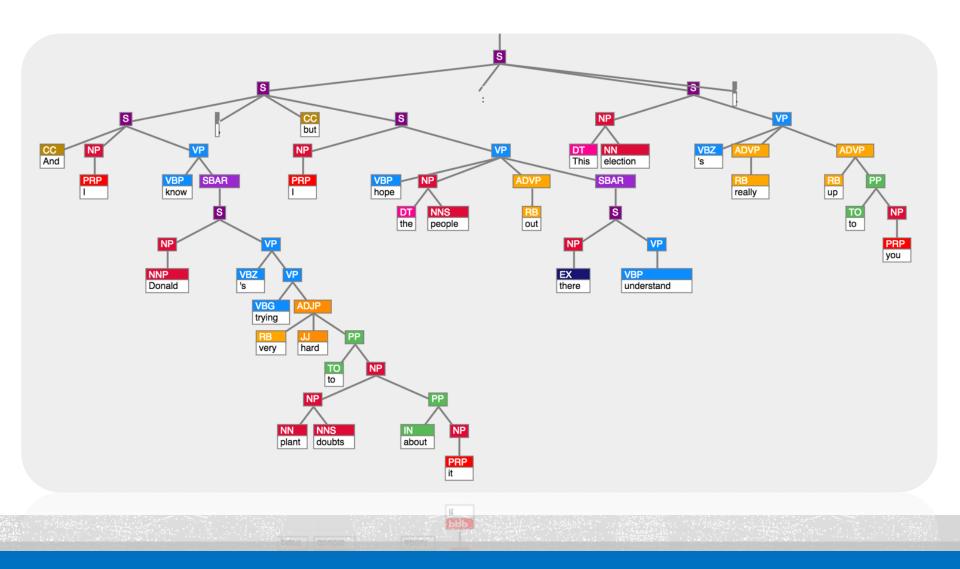
Sentence-level context

(browsing action movie reviews...)
Find me a good one this weekend

request_movie
(genre=action, date=this weekend)

London Has Fallen is currently the number 1 action movie in America

How misunderstanding influences the dialogue system performance



Knowledge-Guided Structural Attention Network (K-SAN)

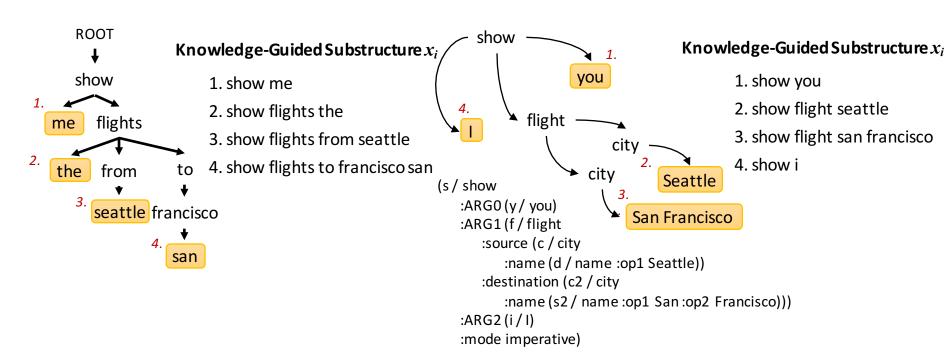
Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, "Knowledge as a Teacher: Knowledge-Guided Structural Attention Networks," preprint arXiv: 1609.00777, 2016.

Sentence Structural Knowledge

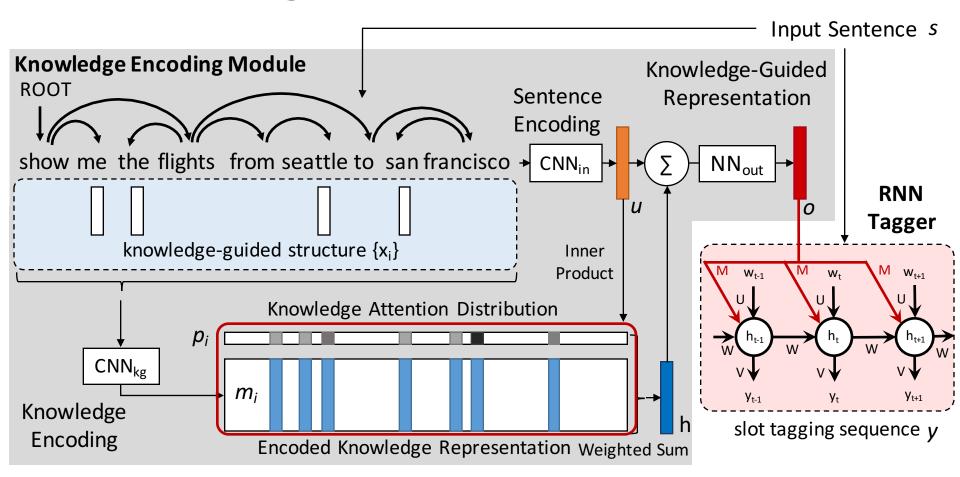
Syntax (Dependency Tree)

Semantics (AMR Graph)

Sentence show me the flights from seattle to san francisco



Knowledge-Guided Structures

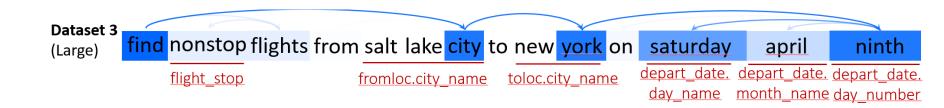


The model will pay more attention to more important <u>substructures</u> that may be crucial for slot tagging.

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, "Knowledge as a Teacher: Knowledge-Guided Structural Attention Networks," preprint arXiv: 1609.00777, 2016.

Attention Analysis

Darker blocks and lines correspond to higher attention weights



Attention Analysis

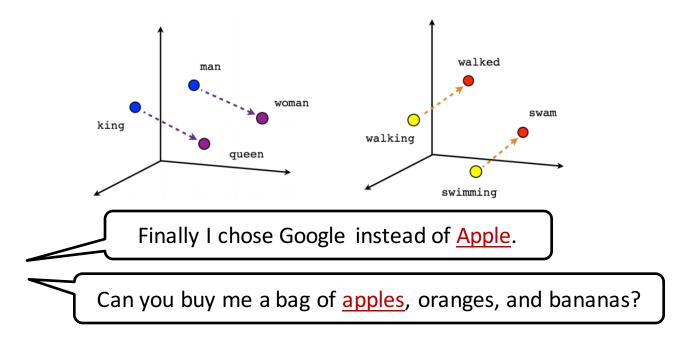
Darker blocks and lines correspond to higher attention weights

K-SAN learns the similar attention to salient substructures with less training data

Modularizing Unsupervised Sense Embeddings (MUSE)

Word Embedding

Word embeddings are trained on a corpus in an unsupervised manner



 Using the same embeddings for different senses for NLP tasks, e.g. NLU, POS tagging

Words with different senses should correspond different embeddings

Task – Unsupervised Sense Embeddings

- Input: unannotated text corpus
- Two key mechanisms
 - Sense selection given a text context
 - Sense representation to embed statistical characteristics of sense identity

Smartphone companies including <u>apple</u> blackberry, and sony will be invited.

MUSE: Modularizing Unsupervised Sense Embeddings

sample collocation Corpus: { Smartphone companies including apple blackberry, and sony will be invited.} Sense selection for **collocated word** $C_{t'}$ Sense selection for target word C_t (2) sense selection \leftarrow negative sampling _ത reward signal ← $q(z_{j1}|\overline{C_{t\prime}})$ $q(z_{j2}|\overline{C_{t\prime}})$ $q(z_{j3}|\overline{C_{t\prime}})$ $P(z_{j2}|z_{i1})P(z_{uv}|z_{i1})$ $q(z_{i1}|\overline{C}_t)$ $q(z_{i2}|\overline{C}_t)$ $q(z_{i3}|\overline{C}_t)$ selection matrix Q_i matrix V matrix Q_i matrix P matrix P matrix U $C_{t\underline{\prime}+1}$ $C_{t'} = w_i$

 z_{i_1}

Sense Representation Module

Sense Selection Module

 $C_t = w_i$

companies including

Sense selection

 $\begin{array}{c} \bullet \ \, \text{Policy-based} \\ \pi(z_{ik} \mid \bar{C}_t) = \frac{\exp(Q_{ik}^T \sum_{j \in \bar{C}_t} P_j)}{\sum_{k' \in Z_i} \exp(Q_{ik'}^T \sum_{j \in \bar{C}_t} P_j)} \end{array}$

Value-based

$$q(z_{ik} \mid \bar{C}_t) = \sigma(Q_{ik}^T \sum_{j \in \bar{C}_t} P_j)$$

 $C_{t\underline{+1}}$

blackberry

Sense representation learning

including apple

blackberry

Sense Selection Module

sonv

$$\log \mathcal{L}(z_{jl} \mid z_{ik}) = \log \frac{\exp(U_{z_{ik}}^T V_{z_{jl}})}{\sum_{z_{uv}} \exp(U_{z_{ik}}^T V_{z_{uv}})}$$

Skip-gram approximation

$$\log \bar{\mathcal{L}}(z_{jl} \mid z_{ik}) = \log \sigma(U_{z_{ik}}^T V_{z_{jl}}) + \sum_{k=1}^{M} \mathbb{E}_{z_{uv} \sim p_{neg}(z)} [\log \sigma(-U_{z_{ik}}^T V_{z_{uv}})]$$

Collocated likelihood serves as a reward signal to optimize the sense selection module.

Contextual Word Similarity Experiments

Dataset: SCWS for multi-sense embedding evaluation

He borrowed the money from banks.

I live near to a **river**.

correlation=?

Approach	MaxSimC	AvgSimC
Huang et al., 2012	26.1	65.7
Neelakantan et al., 2014	60.1	<u>69.3</u>
Tian et al., 2014	63.6	65.4
Li & Jurafsky, 2015	<u>66.6</u>	66.8
Bartunov et al., 2016	53.8	61.2
Qiu et al., 2016	64.9	66.1
MUSE-Policy	66.1	67.4
MUSE-Greedy	66.3	68.3
MUSE-ε-Greedy	67.4 ⁺	68.6

Qualitative Analysis

Context	braves finish the season in tie with the los angeles dodgers	his later years proudly wore tie with the chinese characters for
k-NN	scoreless otl shootout 6-6 hingis 3-3 7-7 0-0	pants trousers shirt juventus blazer socks anfield
Figure	ASTROS 8 1 3 0	

Qualitative Analysis

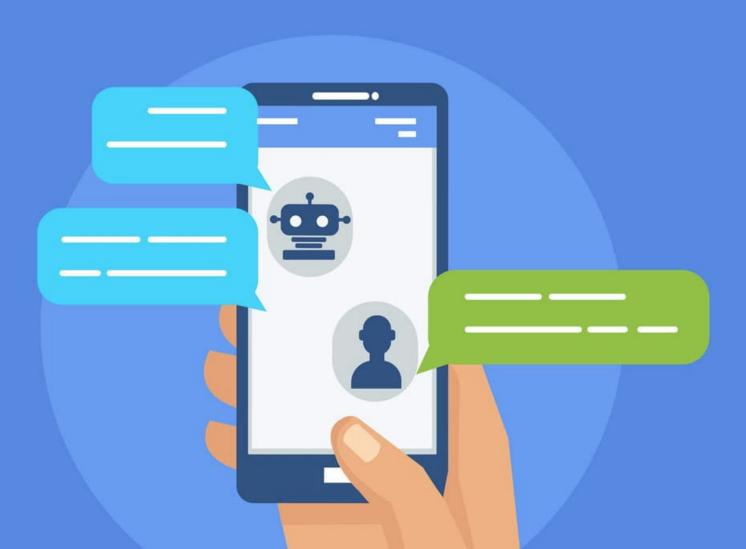
Context	of the mulberry or the blackberry and minos sent him to	of the large number of blackberry users in the us federal
k-NN	cranberries maple vaccinium apricot apple	smartphones sap microsoft ipv6 smartphone
Figure		The BlackBerry 12 12 12 12 12 12 12 1

Qualitative Analysis

Context	shells and/or high explosive squash head and/or antitank	head was shaven to prevent head lice serious threat back then	appoint john pope republican as head of the new army of
k-NN	venter thorax neck spear millimeters fusiform	shaved thatcher loki thorax mao luther chest	multi-party appoints unicameral beria appointed
Figure			

MUSE learns sense embeddings in an *unsupervised* way and achieves the first *purely sense-level* representation learning system with *linear-time sense selection*

RL-Based Neural Dialogue Systems



E2E Neural Dialogue System

- Dialogue management is framed as a reinforcement learning task
- Agent learns to select actions to maximize the expected reward
 Observation

If booking a right ticket, reward = +30

If failing, reward = -30

Otherwise, reward = -1

Environment

Agent

E2E Neural Dialogue System

- Dialogue management is framed as a reinforcement learning task
- Agent learns to select actions to maximize the expected reward

Observation

User Simulator

Natural Language Generation

User Agenda Modeling

Dialogue Policy: request_location

Text Input: Are there any action movies to see this weekend?

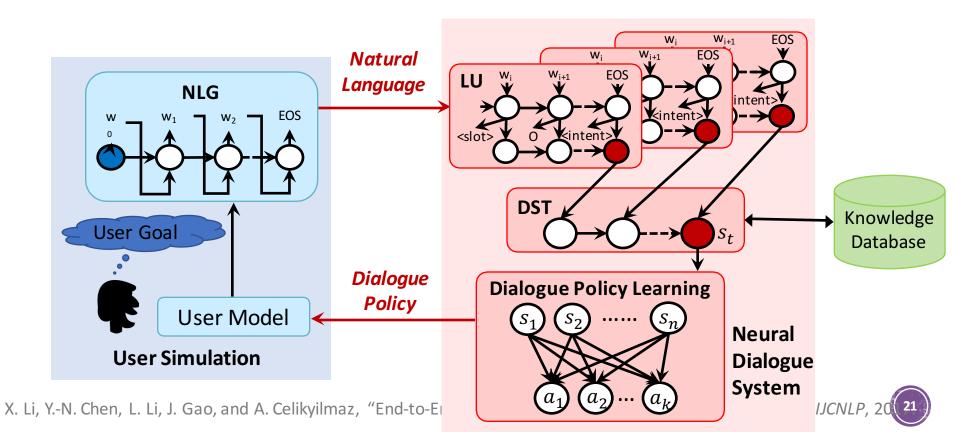
Neural Dialogue System

Language Understanding

Dialogue Management

End-to-End Neural Dialogue Systems

- LU, DST (neural dialogue system), and NLG (user simulation) are trained in supervised way
- End-to-end training for dialogue policy learning



Dialogue Examples

User goal – Two tickets for "Deadpool" tomorrow 9PM at AMC Pacific Place 11 theater, Seattle.

RULE BASED SYSTEM

User: Do you have any ticket for movie 'Deadpool' at 9:00 pm?

Agent: Which theater do you want?

User: AMC pacific place 11 theater, please!

Agent: How many tickets do you want?

User: Two!

Agent: What date? User: Tomorrow!

Agent: Which city do you want?

User: Seattle!

Agent: Do you have any specification for zip code?

User: No, I do not care.

Agent: Do you have any distance constraint?

User: No, I do not care.

Agent: How about video format? 2d? Imax 3d?

User: Any kind is okay.

Agent: Do you have any constraint to price?

User: No!

Agent: Okay, I will issue 2 tickets for you, tomorrow 9:00 pm at AMC

pacific place 11 theater, Seattle, movie 'Deadpool'.

User: Okay, thanks. Agent: Thanks!

REINFORCEMENT LEARNING SYSTEM

User: I want two tickets for movie 'Deadpool'.

Agent: What is the starttime you prefer?

User: 9:00 PM Agent: Which day? User: Tomorrow Agent: Which city?

User: Seattle

Agent: Which theater do you prefer? User: AMC Pacific Place 11 theater.

Agent: Okay, I will issue 2 tickets for you, tomorrow 9:00 pm at AMC pacific place 11 theater, Seattle, movie 'Deadpool'.

User: Okay, thanks.

Agent: Thanks!

Issue 1: no notion about what

requests can be skipped

Dialogue Examples

User goal – Two tickets for "Hail Caesar" tomorrow 7:15PM at AMC Lowes Oak tree 6, Seattle.

RULE BASED SYSTEM

User: Do you any ticket for movie 'Hail Caesar' at theater

AMC Lowes Oak Tree 6?

Agent: What start time do you prefer?

User: **7:15 pm** Tomorrow

Agent: Which city you are looking for?

User: Seattle

Agent: How many tickets do you want?

User: Two

Agent: Okay, I have issued two tickets for movie 'Hail Caeser' tomorrow **7:50 pm** at theater AMC Lowes Oak

Tree 6, Seattle.

User: Oh, no. | Issue 2: no principle way to deal

Agent: Thanks! | with LU errors/uncertainty

REINFORCEMENT LEARNING SYSTEM

Agent: What start time do you prefer?

User: 7:15 pm Tomorrow

Agent: Which city you are looking for?

User: Seattle

Agent: Okay, I will issue you tickets for movie 'Hail Caeser'

tomorrow 7:50 pm at theater AMC Lowes Oak Tree 6, Seattle.

User: Oh, no.

Agent: It is 7:50 pm, right?

User: Two tickets for 7:15 pm, please.

Agent: Okay, I will issue you two tickets for movie 'Hail Caeser'

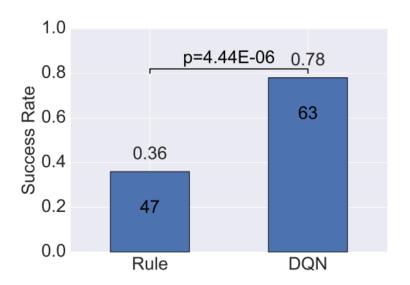
tomorrow **7:15 pm** at theater AMC Lowes Oak Tree 6, Seattle.

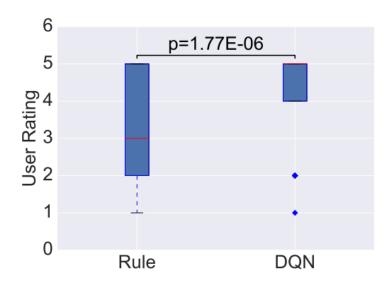
User: Thanks! Agent: Thanks!

Automatically learn when and what to confirm for better robustness

Human Evaluation

- Users presented with a predefined user goal
- User rating: 1 (worst) to 5 (best) based on both naturalness and coherence of the dialogue





Conclusion

- Word-level contexts in sentences help understand word meanings
 - Learning from Prior Knowledge
 - K-SAN achieves better LU via known knowledge [Chen et al., '16]
 - Learning from Observations
 - MUSE learns sense embeddings with efficient sense selection [Lee & Chen, '17]
- Sentence-level contexts have different impacts on dialogue performance
 - Investigation of Understanding Impact
 - Slot errors degrade system performance more than intent errors [Li et al., '17]
- Contexts from different levels provide cues for better understanding in supervised and unsupervised ways

Thanks for Attention!

