- /4

2nd Augmented Intelligence and Interaction (All) Workshop
Tensor Transform for
Memory-Efficient Al Operations on
Parallel Architectures

9

Ls.

< Shao-Yi Chien (E557i&)
° Professor

e Media IC & System Lab

Graduate Institute of Electronics Engineering
National Taiwan University

/ - /
Outline

Al edge: distributed intelligence

Tensor transform for memory-efficient operations
Implementation results

Conclusion

P S

Internet-of-Al-Things

* @

=
Q @

Where Should Computing be Located?

Data from Internet: big
data

Data from IoT: Ultra-big

data! °
Al on the cloud?) > é =) il/ //
Al on the edge? H AggregatorX H Aggregag

A

Smart Devices

ributed Inte
Al Edge

Sensor Aggregator/

Gateway

Data Filtering Process

Context Inferring Process

Data from Large
Each Sensor

Semantic
Level

NVIDIA

HSA,NPU, DSP,
Neural Processors

Cloud Servers with
CPU/GPU/FPGA

“Deep Learning Eco —

ep Learning Ecosystem

- AI, Classification, etc

Caffe, TensorFlow, etc

Library cuDWN, OpenClL, etc

M ffici
Language emory efficient

is the most
important target
for optimization

GPU, CPU

~Unroll: Fast arFSimple

\ Unroll> .

CuBl./lS

9X1

mtion of Unrolling

\ Unroll> .

U(A)

9X1

U(A)p,a = AX, where L; — Z (Sf,;’dj (k’ij + Oj)

~Unroll: More than Conv.

/

Motion
Estimation
Frame 0 Frame 1

Block 1-1

Block 1-2

Matrix
Multiplication
A B
Row 1 Column 1
Row 2 Column 1
Row 1 Column 2
Row 2 Column 2

Block 2-1

Block 2-2

Block 1
Block 1
Block 2
Block 2

/ T /
Unrolling: Where and Who?

Where the unrolling operation is employed?

Everywhere in optimized parallel computing
systems!

CPU, GPU, DSP, VPU, ASIC

Who will execute unrolling in a system

General purpose processors: the software developers
need to handle it

VPU and ASIC: it isembedded in the hardware for
specific applications

roblem of Unrolling

| Unroll> HU

Main memory

Main memory

nroll is a Fast Blackbox

i

Y Unroll
- Blackbox

Processors

Unroll as Last as Possible

Processors GPU Cores IF GPU Cores .'J
Con
l per

Shared Memory ﬂictt- e
utation

Shared Memory H

*

Cache Cache

S

DRAM DRAM

Cache

“Naive Unrolling —

ive Unrolling

Processors

Waste Memory

Cache

! Simple

DRAM

“Unroll at Shared Memory

GPU Cores IF

Shared Memory

&l

Cache

*

Code Reuse
Lower Bandwidth

Still Waste
Memory

DRAM

nroll Upon Computation

GPU Cores

~ Implement Directly
No Memory Waste

Hard to Implement
Bank Conflict

Can we code with unrolled matrix,
but as fast as direct implementation?

/ /

Useful Unrolling Framework Requires

Formulation of unrolling)
Build algorithms b 115 MERIT
u;) algorithms by unrolling emory
NN Efficient
CV, ML > Ranged
Inner-product
Memory efficient unrolling Tensor
transform
GPUs)

ASICs

MI (Unrolled Memory Inner-Products)

Operator

* You simply write code for

Describing the unroll pattern and
Defining what to do for each row.

e Efficient blackbox make you code fast.

[Rou-wise Ops > Results!

Generalized
Inner-
products

*

emory Efficient Unrolling

GPU Cores

e Smooth dataflow must consider:

1. DRAM reuse @
>. Bank conflict '

* Both can be analyzed by the formula:

U(A)p.a = Ax, where x; = Z 0i,a;(kjs; + 05)
J

®

- e

UMI: Experimental Results

UMI blackbox Baseline: OpenCV, Parboil and Caffe
. . . Kernels Note Speed up
CUDA version is available Sooarable =3 53
on Github filter k=30 1.42
. Motion 6.51

Code reduction 2--4x estimation
Forward UMI 3 + 1s 19.9
Sp eed—up 1.4——26X propagation UMI 9 + 1s 26.4
UMI 3 + 2s 1.80
Hardware UMI 9 + 25 2.83

implementation is
coming soon

Ref:Y. S. Lin, W. C. Chen and S. Y. Chien, "Unrolled Memory Inner-Products: An Abstract
GPU Operator for Efficient Vision-Related Computations,” ICCV 2017.

— -

ASI|C Design

TAU: 32-core parallel processor

/

Scaled up linearly

MERIT Processor

Dispatcher

L ’
L 2 . 2 vy ¥

TAU TAU| .. | TAU

'S
e ~
A)
\

'

Memory Bus

| tau

1 Memory Write”

WP
y YW

CP

SRAM

Reg | /s \

Collect data and
write to DRAM

Single-pipelined
RISC for executing
the arithmetic
parts

21

/
Conclusion

Al edge: distributed intelligence

Memory access optimization is the key for efficient
CNN computing

Unrolling plays an important role for memory
optimization, which can also benefit other operations

A unrolling framework, tensor transform for memory-
efficient operations, is developed to decouple
unrolling operations

Implementation results: code reduction 2--4x; speed-
up 1.4--26x

S...

—_—

<
O
)
(O
S
)
Q.
O

