Generative Adversarial Network (GAN)
and its Applications to
Human Language Processing

Hung-vyi Lee

Full version of tutorial: https://www.slideshare.net/ssuserf10be3/icassp-2018-
tutorial-generative-adversarial-network-and-its-applications-to-signal-processing-
and-natural-language-processing



Supervised Learning

» Fully connected feedforward network
Many kinds of

» Convolutional neural network (CNN)
networks:

» Recurrent neural network (RNN)
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Neural '
llCatH
Network Y 70

green eyes

1

How to find Given the examples of inputs/outputsas
the function?  (training data): {(x,,y1),(X5,¥5), - eer (X1000/Y1000)}



Thanks to GAN

DomainY

Transform an object from one domain to another
without paired data (e.g. style transfer)

Domain X data! Domain Y

How to achieve that? https://youtu.be/-3LgL3NXLt!



Unsupervised Learning by GAN
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It is good.

It’s a good day.
| love you.

¢

It is bad.
It’s a bad day.
| don’t love you.

Positive Sentences

Negative Sentences




- Negative sentence to positive sentence:
it's a crappy day — it's a great day
| wish you could be here —» you could be here
it's not a good idea — it's good idea
| miss you — 1 love you
| don't love you — i love you 3 —
| can't do that — | can do that Wi N
| feel so sad — i happy —
it's a bad day — it's a good day
it's a dummy day — it's a great day
sorry for doing such a horrible thing — thanks for doing a
great thing
my doggy is sick - my doggy is my doggy
my little doggy is sick — my little doggy is my little doggy

Learn more from our poster



Unsupervised Learning by GAN

It is good.

It’s a good day.
| love you.

It is bad.

ﬁ It's a bad day.

| don’t love you.
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Unsupervised
Summarization




Abstractive Summarization

* Now machine can do abstractive summary by
seqg2seq (write summaries in its own words)

summary 1

N summary 2

summary |
(in its own words) wl dll . e -l summary 3
seqlseq
Supervised: We need lots of Labelled

labelled training data. Training Data



Unsupervised Abstractive
Summarization

* Now machine can do abstractive summary by
seqg2seq (write summaries in its own words)

summary 1
summary 2 -%
summary 3 ’
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seqg2seq
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Unsupervised Abstractive

Summarization
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 Summary:
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* Unsupervised: A & L B E G G5 A
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Unsupervised Abstractive
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(unpublished result)

Semi-supervised Learning  Usine
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(3.8M pairs are used)



Unsupervised Learning by GAN
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It is good. It is bad.

It’s a good day. ﬁ It’s a bad day.
| love you.

| don’t love you.
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Unsupervised Voice Conversion



Voice Conversion




In the past

Speaker A Speaker B

How are you? e . o W«MW How are you?
Good morning RS WM Good morning

Today Speaker A Speaker B

RRES M«»«mm How are you?
B R WM‘W Good morning

Speakers A and B are talking about completely different things.




Speaker A Speaker B
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Unsupervised Learning by GAN
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It is good.

It’s a good day.
| love you.
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It is bad.
It’s a bad day.
| don’t love you.
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Unsupervised Speech Recognition
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Acoustic Pattern Discovery

Can we achieve o
unsupervised speech ~

recognition?

[Liu, et al., arXiv, 2018] [Chen, et al., arXiv, 20



Unsupervised Speech Recognition

N Audio: TIMIT
* Phoneme recognition Text: WMT

supervised
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Unsupervised Learning by GAN

It is good. It is bad.

It’s a good day. ﬁ It’s a bad day.
| love you.

| don’t love you.
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