
Intelligent	System	for	AI
清大資工 周志遠

2018/5/19 @ AII Workshop



• 周志遠 (Jerry Chou)
– Email: jchou@cs.nthu.edu.tw
– Large-scaled System Architecture (LSA) Lab

• 經歷
– 清華大學資工系 副教授 2016~現今
– 清華大學資工系 助理教授 2011~2016
– 美國勞倫斯國家實驗室工程師 2010~2011
– 美國加州大學聖帝亞哥分校(UCSD)博士學位 2009

• 研究領域
– 雲端計算、分散式系統、高效能計算、巨量資料處理

2



AI

Intelligent	resource	
management	&	
system	administration

System

VM baremetal

CPU FPGA

container

Xeon	Phi GPU

Service Interface

Resource Orchestration

Hardware Virtualization

High	throughput	
&		cost	effective

DGX-1
150,000 USD

256	GPUs	in	one	hour
[facebook2017]

ResNet-50

3



Systems	for	AI

Public	cloud

Managed	service
Pay-as-you-used
Availability,	Reliability

Cost:	10K	TWD	for	256GPU-
hour
Data	privacy	and	transfer

4



Systems	for	AI

Public	cloud

Managed	service
Pay-as-you-used
Availability,	Reliability

Cost:	10K	TWD	for	256GPU-
hour
Data	privacy	and	transfer

Private	cloud

Control	&	efficiency
Security	&	privacy
Customization

Complex	&	virtualized	HW	infra.
Diverse	SW	deployment
Resource	management

5



Systems	for	AI

Public	cloud

Managed	service
Pay-as-you-used
Availability,	Reliability

Cost:	10K	TWD	for	256GPU-
hour
Data	privacy	and	transfer

Private	cloud

Control	&	efficiency
Security	&	privacy
Customization

Complex	&	virtualized	HW	infra.
Diverse	SW	deployment
Resource	management

6



Key	Challenges	of	AI	Systems
• System	Infrastructure:	

– VM	+	CPU	
è Container	+	GPU

• Training	job	execution:
– Static	Single	instance	execution	

è Elastic	distributed	execution

7



Container-based	GPU	Cloud
• Why	Container?

– Lightweight,	low	performance	overhead
– High	deployment	density
– Execution	environment	isolation

Benchmark	TensorFlow
on	varied	resource	
orchestration	(baremetal,	
container,	VM) and	
execution	environment	
(single,	distributed,	
multi-tenant)

8



Container-based	GPU	Cloud
• Why	Container?

– Lightweight,	low	performance	overhead
– High	deployment	density
– Execution	environment	isolation

Single	instance Distributed

Container	can	deliver	
close	to	the	bare-metal	
performance	in	
dedicated	resource	
environment	

9



Container-based	GPU	Cloud
• Why	Container?

– Lightweight,	low	performance	overhead
– High	deployment	density
– Execution	environment	isolation

Multi-tenant

• Continer	lacks	of	QoS	control	for	
PCIE	and	GPU

• GPU	may	not	be	fully	utilized	by	
a	single	job

10

large	batch	size argebatch	size



Container-based	GPU	Cloud
• Why	Kubernetes	(container	orchestrator)?

– Automating	deployment,	scaling,	and	(lifecycle	&	resource)	
management of	containerized	applications

• Current	solutions	&	limitations
– NVidia-Docker:	expose	GPU	devices	to	containers

• Dedicate	GPU	allocation	to	container
– K8S	resource	limit:	control	memory	and	CPU	usage

• GPU	is	not	manageable	resource	yet
– KubeFlow:	A	TF-operator	to	deploy	containerized	TF	job	as	
a	set	of	K8S	applications

• Naïve	round-robin	scheduling	without	scaling	and	management

11



Proposed	Solutions:	
Multi-tenant	GPU	controller

• Objective
– Treat	GPU	as	the	first	class

resource like	CPU
– Allow	users	to	specify	the	max

and	min requirements	for	GPU	
utilization and	memoryusage

• Approach
– Intercept	CUDA	driver	&	

runtime	API
– Forward	requests	to	a	

centralized	scheduler	for	CPU	
and	memory	control

– Similar	to	conVGPU,	but	focus	
more	on	GPU	utilization	
control and	GPU	assignment

60%

40%

Container	A

50%

30%

Container	B

40%

30%

40%

GPU	
usage

12

Nvidia Docker	
container

GPU	
controller

CUDA	driver

CUDA	
API	pass	
through

Mem	&	
kernel	call

GPU	assignment

CUDA	API	
wrapper

K8S
scheduler

Usage	
info

Requested/
Approved	
API	calls



Proposed	Solutions:
Elastic-KubeFlow

• An	enhanced	K8S	TF-operator	over	KubeFlow
Auto-

Deployment
Scheduling Scaling

KubeFlow Round-Robin

Elastic-
KubeFlow

Perf. Aware	
Placement

Scale-up	when	util.	is	low
Scale-down	when	wait	time	is	high

TF-operator
Job1

worker1

job	queue

Job1
worker3

Job1
worker4

Job1
worker2

Job2
worker1

Job2
worker3

Job2
worker2

Job1
worker1

Job1
worker3

Job1
worker4

Job1
worker2

Job2
worker1

Job3
worker1

Job4
worker1

Job2
worker2

System	in	Low	Loading System	in	High	Loadingjob	queue
Job5

worker1
Job6

worker1

13



Proposed	Solutions:
Elastic-KubeFlow

• An	enhanced	K8S	TF-operator	over	KubeFlow
Auto-

Deployment
Scheduling Scaling

KubeFlow Round-Robin

Elastic-
KubeFlow

Perf. Aware	
Placement

Scale-up	when	util.	is	low
Scale-down	when	wait	time	is	high

TF-operator
Job1

worker1

job	queue

Job1
worker3

Job1
worker4

Job1
worker2

Job2
worker1

Job2
worker3

Job2
worker2

Job1
worker1

Job1
worker3

Job1
worker4

Job1
worker2

Job2
worker1

Job3
worker1

Job4
worker1

Job2
worker2

System	in	Low	Loading System	in	High	Loadingjob	queue
Job5

worker1
Job6

worker1

14

Total	job	 run	time:	4:11:44	è 3:16:54	(22%				) Total	job	wait	time:	4:45:02	è 2:57:37	(38%				)



Distributed	Deep	Learning
• Model	Parallelism

– Within	a	node:	shared	memory,	auto-
managed	by	framework

– Across	nodes:	message	passing,	model	
rewritten	by	developers

• Data	Parallelism
– Parameter	server:

• Asynchronous	centralized	comm.
èFaster	converge	time,	but	higher	
network	BW	requirement

• Main	strategy	in	TF
– All	reduce:	

• Synchronous	P2P	comm.
èHigher	latency	delay,	but	more	
balanced	network	traffic	(avoid	
hotspot)

• Recent	optimized	imp.	by	Horovod

Model	parallelism

Data	parallelism	(PS)

Data	parallelism	(P2P) 15



Distributed	Model	Training
• Why	distributed	model	training?

– Shorter	training	time
– Fully	utilize	computing	resources

16Distributed	Training	of	Deep	Neural	Networks:	Theoretical	and	Practical	Limits	of	Parallel	Scalability.

• Non-negligible overhead
• More	tuning	nobs:	batch	
size,	learning	rate,	#PS



Proposed	Solutions:	Elastic-TensorFlow
• Why	we	want	to	dynamically	add/remove	workers
from	a	training	job	without	checkpoint-restart?
– Auto-tuningPS/Worker	ratio	at	runtime
– Reach	desired	performance	with	minimum	cost
– Maximize	system	utilization	&	throughput (Combine	with	
our	elastic-kubeflow controller)

17
Distributed	training	strategies	for	a	computer	vision	
deep	learning	algorithm	on	GPU	cluster

http://blog.kubernetes.io/2017/12/paddle-paddle-fluid-
elastic-learning.html



AI for	Systems
• Time	prediction	for	optimizing	job	execution

– Apply	FCN、RNN	for	complex	parallel	DAG	

• Anomaly	&	failure	prediction	for minimizing	cost
– DNN	along	might	not	be	enough…

• Using	SVM	for	rare	class	classification
• Using	bayesian network	or	decision	tree	for	root	cause	
diagnosis

• Using	probability	distribution	for	system	metrics	prediction

• Auto-scaling	&	Scheduling	for	maximizing	system	
performance
– Apply	reinforcement	learning:	A3S,	Deep	Q-learning

18



Time	Prediction	of	Hadoop	Execution

• A	parallel	execution	job
• Over	100	execution	configurations
• Cloud	platform	provides	varied	compute	instance	types
• Inexperienced	users for	performance	optimization

19

𝒇 𝑗𝑜𝑏	𝑝𝑟𝑜𝑓𝑖𝑙𝑒, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑠𝑝𝑒𝑐, 𝑒𝑥𝑒	𝑐𝑜𝑛𝑓𝑖𝑔 = 𝑗𝑜𝑏	𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒



Time	Prediction	of	Hadoop	Execution

Step1

Step2 Step3 Step4

Ø Step1: Job Profiling
� Collect job features

Ø Step2: Job classification
� Improve prediction accuracy

Ø Step3: Model prediction
� Fully-Connected NN

Ø Step4: Optimization
� Search optimal configurations

20



Evaluation	Results
• Workload	from	HiBench,	a	Hadoop	benchmark	suite

DecisionTree:	16%
SVM:	12%
NN:	8%

More	accurate	time	prediction	
than	traditional	ML	methods

10~50%	performance	
improvement	by	choosing	the	
proper	execution	configurations

21

Prediction	Accuracy Performance	Improvement



Time	Prediction	of	Hive	Query
• Hive:	A	query	engine	on	Hadoop

– Complex	workflow	represented	by	DAG

22

Query	Statement

Different	DAG	execution	plans

Job	dependency

Translation Execution

OR



Time	Prediction	of	Hive	Query

23

• RNN	model
– Serialized	DAG	workflow with	arbitrary	job	sequence	length
– Stored	state	for	capturing	job	dependency	effects

• Two	level	prediction	&	optimization
– Query	level	(Hive)	and	job	level	(Hadoop)



Evaluation	Results
• Workload	from	TPC-H	benchmarks

24

RNN	has	the	lowest	error	rate comparing	
to	DNN	and	other	methods

Improve	performance	by	over	50%	
when	both	Hadoop	and	Hive	
configurations	are	optimized

Prediction	Accuracy Performance	Improvement



25


