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Key Challenges of Al Systems

* System Infrastructure:
— VM + CPU
=» Container + GPU

* Training job execution:

— Static Single instance execution
=>» Elastic distributed execution



Container-based GPU Cloud

* Why Container? .*k

— Lightweight, low performance overhead docker
— High deploymentdensity
— Execution environmentisolation

Bare-metal Container on BM Virtual Machine Container on VM

OpenStack _ _ _ _ _ _ _ _ _ _|
Compute
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on varied resource |
orchestration (baremetal, : | |

container, VM) and
execution environment
(single, distributed,
multi-tenant)



Container-based GPU Cloud

* Why Container? .*k

— Lightweight, low performance overhead docker
— High deploymentdensity
— Execution environmentisolation

"BM Containeron BM "M " Containeron VM "M Container on BM "M #Container on VM
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Container-based GPU Cloud

* Why Container? .*!

— Lightweight, low performance overhead docker
— High deploymentdensity
— Execution environmentisolation

e Continerlacks of QoS control for "B Container on BM .M
PCIE and GPU . 60.0%
* GPU may not be fully utilized by g 500%
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a single job 2 soom
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InceptionV3 ResNet-50 AlexNet AlexNet
(batch size 512)  (batch size 32)

Multi-tenant
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Container-based GPU Cloud

 Why Kubernetes (container orchestrator)? kubernetes
— Automating deployment, scaling, and (lifecycle & resource)
management of containerized applications

e Currentsolutions & limitations
— NVidia-Docker: expose GPU devices to containers
* Dedicate GPU allocationto container

— K8S resource limit: control memory and CPU usage
 GPU is not manageableresource yet

— KubeFlow: A TF-operator to deploy containerized TF job as

a set of K8S applications
* Naiveround-robinschedulingwithout scalingand management
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Proposed Solutions:

GPU
Multi-tenant GPU controller usage
40%
* Objective Container A |
. Container B
— Treat GPU as the first class 60% .
resource like CPU 20% 50% .
— Allow users to specify the max QB;)go% -
and min requirements for GPU 40%
utilization and memory usage
* Approach SIS
— Intercept CUDA driver & scheduler ]
runtime API % Usage
— Forwardrequeststo a : info
centralized scheduler for CPU
and memory control Requested)
— Similar to conVGPU, but focus Approved
more on GPU utilization APl calls

controland GPU assignment
GPU assighment




Proposed Solutions:
Elastic-KubeFlow

 An enhanced K8S TF-operator over KubeFlow

Auto- Scheduling Scaling
Deployment

m J Round-Robin x

Elastic- J Perf. Aware Scale-up when util. is low
KubeFlow Placement Scale-down when wait time is high

job queue System in Low Loading job queue System in High Loading
- | [T ] Job2 L4 1 | l Job5 Job6
@ worker3 j [workerl workerl
Jobl Jobl Job2 Jobl ﬁl Job2 Job3
TF-operator | workerl worker3 worker1 worker1l  ®orker3 worker1l  workerl
~—
Jobl Jobl Job2 Jobl 1 Job2 Job4
worker2 worker4 worker2 worker2 ohker4 worker2 = workerl
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Proposed Solutions:
Elastic-KubeFlow

 An enhanced K8S TF-operator over KubeFlow

Auto- Scheduling Scaling
Deployment

m J Round-Robin x

J Perf. Aware Scale-up when util. is low
KubeFlow Placement Scale-down when wait time is high

Total job run time: 4:11:44 =» 3:16:54 (22%') Total job wait time: 4:45:02 =» 2:57:37 (38%')

job queue System in Low Loading job queue System in High Loading
| [T ] Job2 L4 1 | W Job5 Job6
worker3 j /workerl workerl
Jobl Jobl Job2 Jobl ﬁl Job2 Job3
- workerl worker workerl workerl orker workerl workerl
TF-operator k ker3 k k 3 k k
~—
Jobl Jobl Job2 Jobl 1 Job2 Job4
worker2 worker4 worker2 worker2 ohker4 worker2 = workerl
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Distributed Deep Learnin

Model Parallelism
— Within a node: shared memory, auto-
managed by framework
— Acrossnodes: message passing, model
rewritten by developers
Data Parallelism
— Parameterserver:
* Asynchronouscentralized comm.
=» Faster converge time, but higher
network BW requirement
* Main strategyin TF
— All reduce:
e SynchronousP2P comm.
=>» Higher latency delay, but more
balanced network traffic (avoid
hotspot)
* Recent optimizedimp. by Horovod
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Distributed Model Training

- .. * Non-negligible overhead
. ?
Why distributed model training? |, More tuning nobs: batch

— Shorter training time size, learning rate, #PS
— Fully utilize computing resources

o
1
8 16 32 64 128

# nodes

- AlexNet (B=256) -t AlexNet (B=1024) AlexNet [1]
- GooglL eNet (B=32) —p— G ooglLeNet (B=256) GooglLeNet (B=1024)

-—»4— GooglL eNet [6] (B=1024) Linear Speedup

Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability. 16



(percentage

CPU utilization

Proposed Solutions: Elastic-TensorFlow

 Why we want to dynamically add/remove workers

from a training job without checkpoint-restart?
— Auto-tuning PS/Worker ratio at runtime
— Reach desired performance with minimum cost
— Maximize system utilization & throughput (Combine with
our elastic-kubeflow controller)

BW7PS

swips 8WSPS

|
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aw3sps 4W3PS

300 AWI1PS
lelusuIAiug-n‘n" 200 2W1PS 2wipPs
autoscaling-off —
' I ' | 100
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time (s) o . . . . - . .
Nodes

each line is one pass of the experiment, 20 passes total N

http://blog.kubernetes.io/2017/12/paddle-paddle-fluid- Distributed training strategiesfor a computer vision17
elastic-learning.html deep learning algorithm on GPU cluster



Al for Systems

* Time prediction for optimizing job execution
— Apply FCN ~ RNN for complex parallel DAG

 Anomaly & failure prediction for minimizing cost

— DNN along might not be enough...
* Using SVM forrareclass classification

e Using bayesian network or decision tree forroot cause
diagnosis
e Using probabilitydistributionfor system metrics prediction

* Auto-scaling & Scheduling for maximizing system

performance
— Apply reinforcement learning: A3S, Deep Q-learning
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Time Prediction of Hadoop Execution

f(jobprofile,resource spec,exe config) = job execution time

A parallel execution job

 Over 100 execution configurations

* Cloud platform provides varied compute instance types
* |nexperienced users for performance optimization
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Time Prediction of Hadoop Execution
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> Step1: Job Profiling

e Collect job features
> Step2: Job classification
e Improve prediction accuracy

> Step3: Model prediction
e Fully-Connected NN
> Step4: Optimization
e Search optimal configurations

J
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Evaluation Results
 Workload from HiBench, a Hadoop benchmark suite

Prediction Accuracy Performance |mpr0vement
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More accurate time prediction improvementby choosing the

than traditional ML methods proper execution configurations
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Time Prediction of Hive Query

Hive: A query engine on Hadoop
— Complex workflow represented by DAG

Different DAG execution plans

SELECT tmpl.key, count(*)
FROM tl
JOIN /*JOIN1*/ (SELECT key, avg(value) AS avg

FROM t1

GROUP BY /*AGGl*/ key) tmpl ON (tl.key = tmpl.key)
JOIN /*JOIN1*/ t2 ON (tmpl.key = t2.key)
WHERE t2.value > tmpl.avg
GROUP BY /*AGG2*/ tl.key;

Translatlon Execution
Query Statement

Job dependency

22



Time Prediction of Hive Query

* RNN model
— Serialized DAG workflow with arbitrary job sequence length
— Stored state for capturing job dependency effects

 Two level prediction & optimization
— Query level (Hive) and job level (Hadoop)

Dconf Sequence length prediction
Offline - Prediction | Online - Optimization &
Data collection I N Jinfo prediction
ew Que U
I Query Dconf Number of jobs
|
1

DAG prediction
\ EXPLAN model
DAG plan pl ‘[ ]‘__ }““D
DAG ptediction
mpdel 4 N QHB
' Hive \/ | Qconf | !lnfol || Qconf | Jlnfoz || Qconf | Jinfo3 || Qconf | Jinfo3 |

I optimization J Job1input  Job2input Job3input  Job4 input
<

Jlaligedata Time pl'ediction >
Time prediction
mpdel
I P "'.30!°°F" model
1 optimization
1 \_ J ti me1 tme2 ti me3 tlme4

Optimized settings

Total time



Evaluation Results

e Workload from TPC-H benchmarks

Prediction Accuracy
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RNN hasthe lowest errorrate comparing
to DNN and other methods

Performance Improvement
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Improve performance by over 50%
when both Hadoop and Hive
configurationsare optimized.,






