

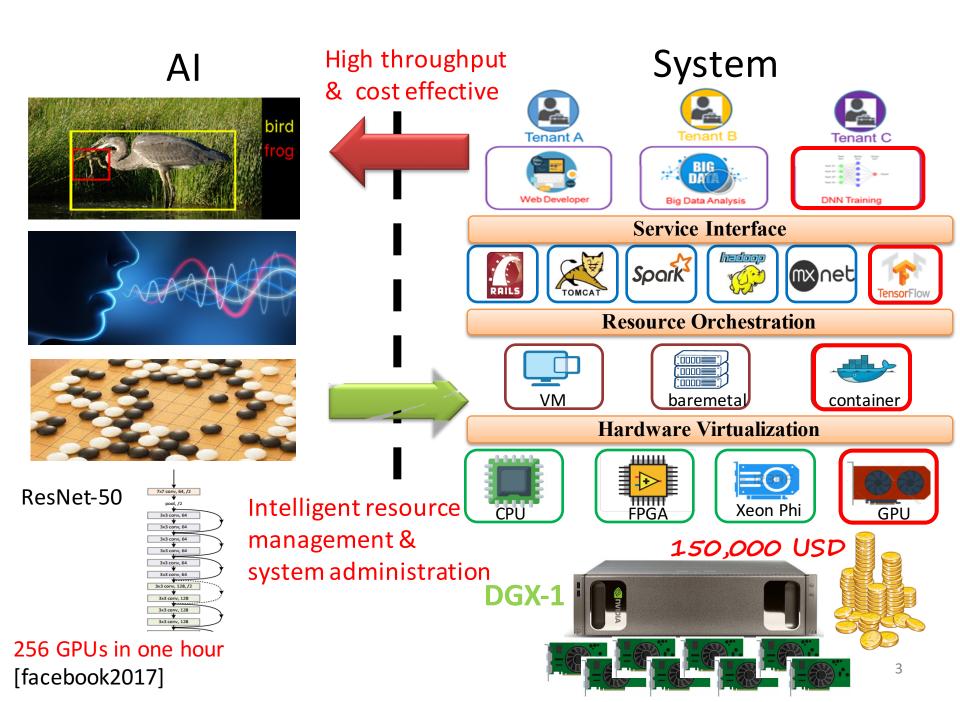
Intelligent System for Al 清大資エ 周志遠 2018/5/19 @ AII Workshop

- 周志遠 (Jerry Chou)
 - Email: jchou@cs.nthu.edu.tw
 - Large-scaled System Architecture (LSA) Lab
- 經歷

國立情華大學

NATIONAL TSING HUA UNIVERSITY

- 清華大學資工系 副教授 2016~現今
- 清華大學資工系 助理教授 2011~2016
- 美國勞倫斯國家實驗室 工程師 2010~2011
- 美國加州大學聖帝亞哥分校(UCSD) 博士學位 2009
- 研究領域
 - 雲端計算、分散式系統、高效能計算、巨量資料處理



Systems for Al

Public cloud

Managed service Pay-as-you-used Availability, Reliability

Cost: 10K TWD for 256GPUhour

Data privacy and transfer

Systems for Al

Public cloud

Managed service Pay-as-you-used Availability, Reliability

Cost: 10K TWD for 256GPUhour

Data privacy and transfer

Private cloud

Control & efficiency Security & privacy Customization

Complex & virtualized HW infra. Diverse SW deployment Resource management

Systems for Al

Cost: 10K TWD for 256GPUhour

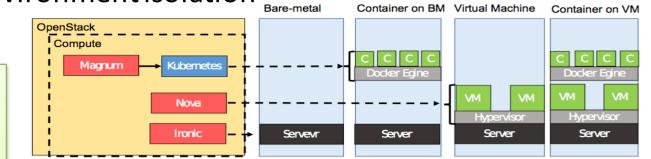
Data privacy and transfer

Complex & virtualized HW infra. Diverse SW deployment Resource management

Key Challenges of Al Systems

- System Infrastructure:
 - VM + CPU
 - ➔ Container + GPU
- Training job execution:
 - Static Single instance execution
 - → Elastic distributed execution

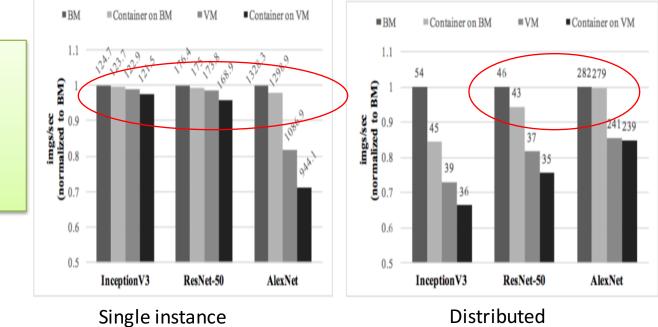
- Why Container?
 - Lightweight, low performance overhead
 - High deployment density
 - Execution environment isolation



Benchmark TensorFlow on varied resource orchestration (baremetal, container, VM) and execution environment (single, distributed, multi-tenant)

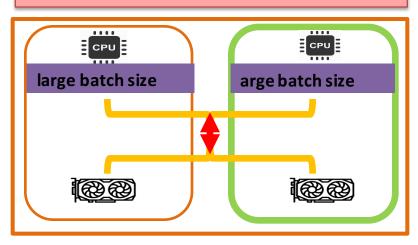
- Why Container?
 - Lightweight, low performance overhead
 - High deployment density
 - Execution environment isolation

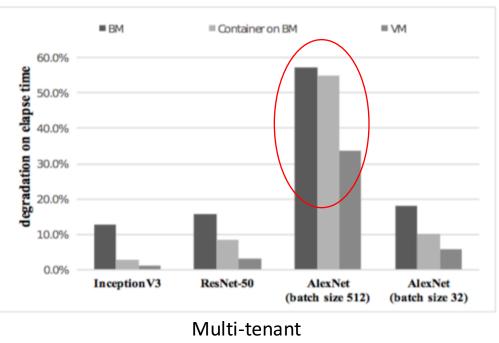
Container can deliver close to the bare-metal performance in dedicated resource environment



- Why Container?
 - Lightweight, low performance overhead
 - High deployment density
 - Execution environment isolation

- Continer lacks of QoS control for PCIE and GPU
- GPU may not be fully utilized by a single job

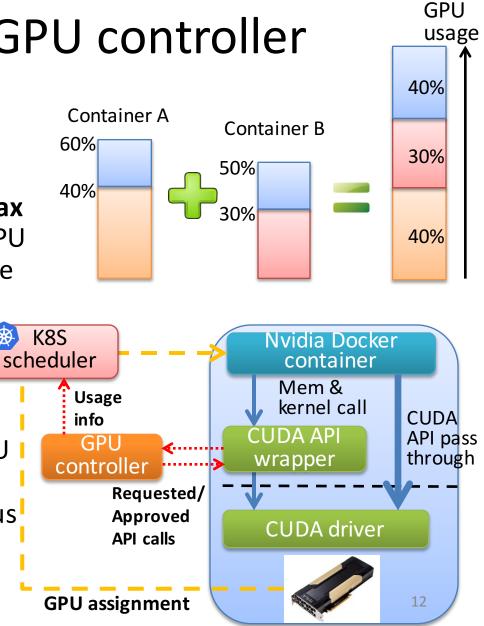




- Why Kubernetes (container orchestrator)?
 - Automating deployment, scaling, and (lifecycle & resource) management of containerized applications
- Current solutions & limitations
 - NVidia-Docker: expose GPU devices to containers
 - Dedicate GPU allocation to container
 - K8S resource limit: control memory and CPU usage
 - GPU is not manageable resource yet
 - KubeFlow: A TF-operator to deploy containerized TF job as a set of K8S applications
 - Naïve round-robin scheduling without scaling and management

Proposed Solutions: Multi-tenant GPU controller

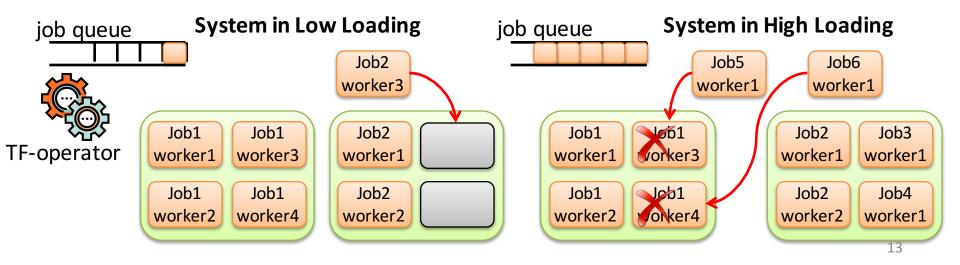
- Objective
 - Treat GPU as the first class resource like CPU
 - Allow users to specify the max and min requirements for GPU utilization and memory usage
- Approach
 - Intercept CUDA driver & runtime API
 - Forward requests to a centralized scheduler for CPU and memory control
 - Similar to conVGPU, but focus more on GPU utilization control and GPU assignment



Proposed Solutions: Elastic-KubeFlow

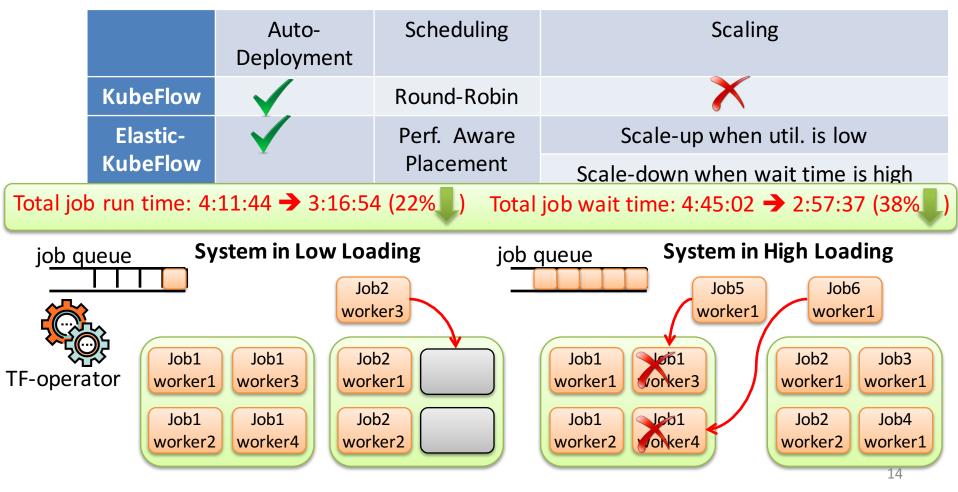
An enhanced K8S TF-operator over KubeFlow

	Auto- Deployment	Scheduling	Scaling
KubeFlow	\checkmark	Round-Robin	\mathbf{x}
Elastic-	\sim	Perf. Aware	Scale-up when util. is low
KubeFlow		Placement	Scale-down when wait time is high



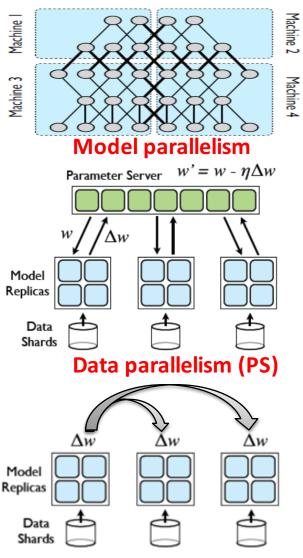
Proposed Solutions: Elastic-KubeFlow

An enhanced K8S TF-operator over KubeFlow



Distributed Deep Learning

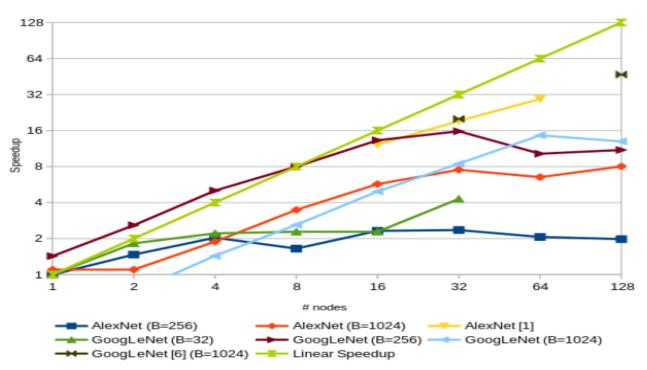
- Model Parallelism
 - Within a node: shared memory, automanaged by framework
 - Across nodes: message passing, model rewritten by developers
- Data Parallelism
 - Parameter server:
 - Asynchronous centralized comm.
 - Faster converge time, but higher network BW requirement
 - Main strategy in TF
 - All reduce:
 - Synchronous P2P comm.
 - Higher latency delay, but more balanced network traffic (avoid hotspot)
 - Recent optimized imp. by Horovod



Data parallelism (P2P)¹⁵

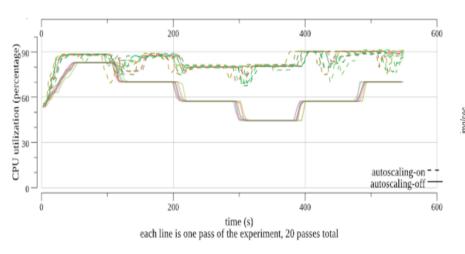
Distributed Model Training

- Why distributed model training?
 - Shorter training time
 - Fully utilize computing resources
- Non-negligible overhead
- More tuning nobs: batch size, learning rate, #PS

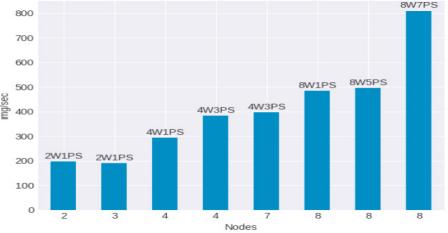


Proposed Solutions: Elastic-TensorFlow

- Why we want to dynamically add/remove workers from a training job without checkpoint-restart?
 - Auto-tuning PS/Worker ratio at runtime
 - Reach desired performance with minimum cost
 - Maximize system utilization & throughput (Combine with our elastic-kubeflow controller)



http://blog.kubernetes.io/2017/12/paddle-paddle-fluidelastic-learning.html



Distributed training strategies for a computer vision deep learning algorithm on GPU cluster 17

Al for Systems

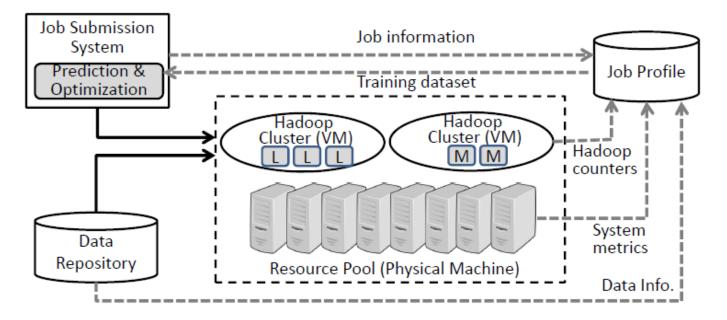
- Time prediction for optimizing job execution
 Apply FCN
 RNN for complex parallel DAG
- Anomaly & failure prediction for minimizing cost
 - DNN along might not be enough...
 - Using SVM for rare class classification
 - Using bayesian network or decision tree for root cause diagnosis
 - Using probability distribution for system metrics prediction
- Auto-scaling & Scheduling for maximizing system performance

Apply reinforcement learning: A3S, Deep Q-learning

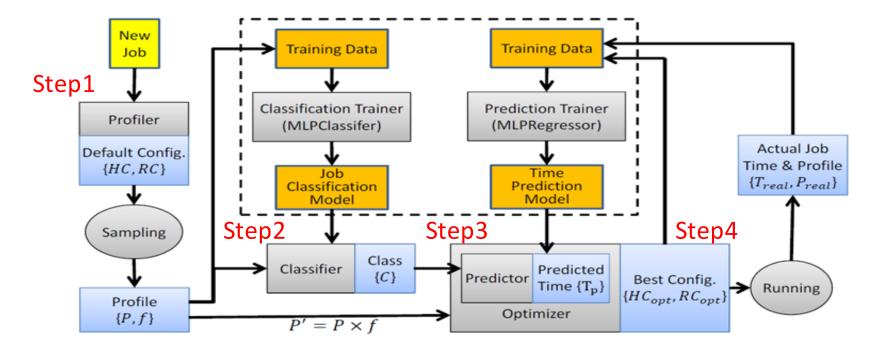
Time Prediction of Hadoop Execution

f(job profile, resource spec, exe config) = job execution time

- A parallel execution job
- Over 100 execution configurations
- Cloud platform provides varied compute instance types
- Inexperienced users for performance optimization



Time Prediction of Hadoop Execution

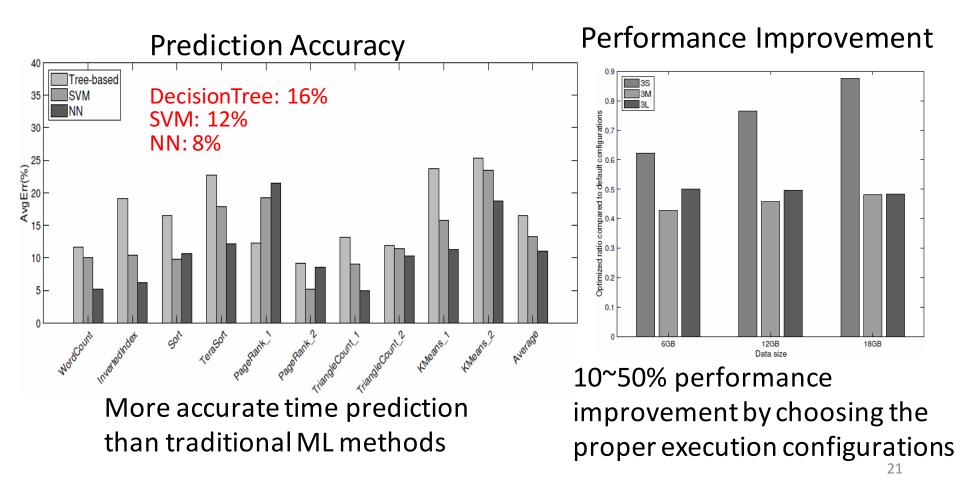


- Step1: Job Profiling
 - Collect job features
- Step2: Job classification
 - Improve prediction accuracy

- Step3: Model prediction
 - Fully-Connected NN
- Step4: Optimization
 - Search optimal configurations

Evaluation Results

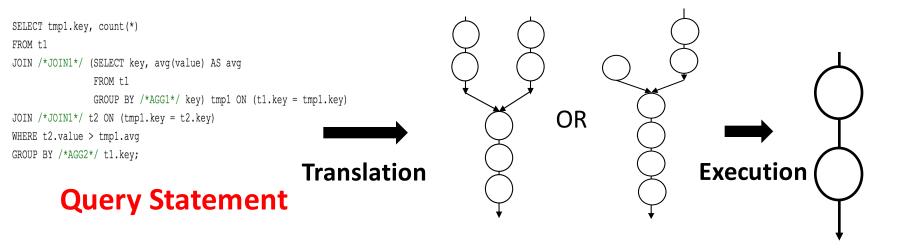
• Workload from HiBench, a Hadoop benchmark suite



Time Prediction of Hive Query

- Hive: A query engine on Hadoop
 - Complex workflow represented by DAG

Different DAG execution plans



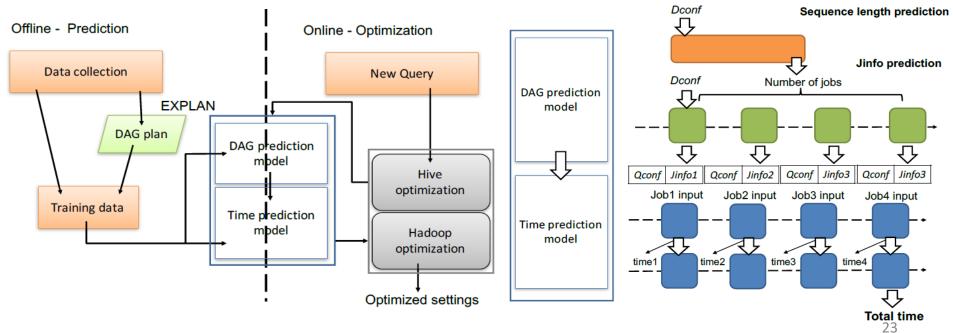
Job dependency

Time Prediction of Hive Query

RNN model

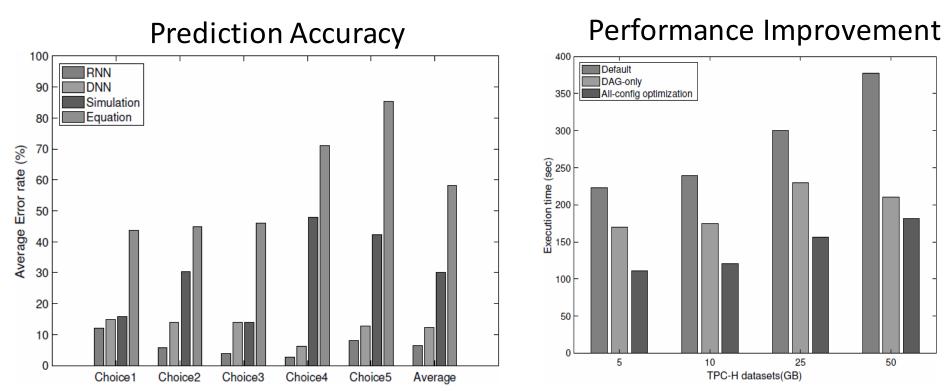
- Serialized DAG workflow with arbitrary job sequence length
- Stored state for capturing job dependency effects
- Two level prediction & optimization

- Query level (Hive) and job level (Hadoop)



Evaluation Results

Workload from TPC-H benchmarks



RNN has the lowest error rate comparing to DNN and other methods

Improve performance by over 50% when both Hadoop and Hive configurations are optimized 24

