

Introduction

or not via rich sensory inputs.

Dataset

Ministry of Science and Technology

We use rich sensory inputs to collect both successful and failure pouring sequences.

Liquid Pouring Monitoring via Rich Sensory Inputs

Tz-Ying Wu^{1,*}, Juan-Ting Lin^{1,*}, Tsun-Hsuang Wang¹, Chan-Wei Hu¹, Juan Carlos Niebles², Min Sun¹ (*indicate equal contribution) ¹National Tsing Hua University ²Stanford University

type and liquid amount.

Forecasting 3D Trajectory

We forecast the one-step future 3D trajectory of the hand with an adversarial training procedure. **Generator** $L_{Gen} = L_{reg} + L_{adv}$

We generate trajectories that are close to the ground truth demonstration. (with regression loss)

$$L_{reg} = \frac{1}{T-1} \sum_{t=1}^{T-1} dist(X_{t+1}, dist(X_{t+1}, G_{\theta_G}(h_t))) = MSE(P, P') + \sum_{t=1}^{T-1} dist(X_{t+1}, G_{\theta_G}(h_t))$$

We aim at fooling the discriminat generated trajectory (with adver

$$L_{adv} = \frac{1}{T-1} \sum_{t=1}^{T-1} -\log D_{\theta_D} \left(h_t, G_{\theta_G}(h_t) \right)$$

Discriminator

 Discriminates real samples and generated samples $L_{Dis} = \frac{1}{T-1} \sum_{t=1}^{T-1} \left[-\log \left(D_{\theta_D}(h_t, X_{t+1}) \right) - l d_{\theta_D}(h_t, X_{t+1}) \right] - l d_{\theta_D}(h_t, X_{t+1}) = 0$

Experiment **Cross Container**

	succ./fail. acc.	classification acc.	position error	rotation error
Vanilla RNN	89.16~%	N/A	N/A	N/A
Ours w/o adv.	96.45~%	63.92~%	0.040 m	11.11°
Ours	97.11 %	67.69 ~%	0.038 m	11.30°
Cross User				
	succ./fail. acc	. classification acc.	position error	rotation error
Vanilla RNN	81.95 %	N/A	N/A	N/A
RNN w/IOSC	C = 89.25 %	68.51~%	N/A	N/A
RNN w/TF	90.82 %	N/A	0.033 m	14.15°
Ours $w/o a dv$.	92.97 %	$64.15 \ \%$	0.033 m	14.20°
Ours	93.25 %	75.69 %	0.033 m	$\boxed{14.06^{\circ}}$

Vanilla RNN: Our fusion RNN without any auxiliary tasks. **RNN w/ IOSC:** Our fusion RNN with an aux. task, initial object state classification. RNN w/ TF: Our fusion RNN with an aux. task, trajectory forecasting Ours w/o adv.: Our fusion RNN with two aux. tasks. In this setting, we treat onestep trajectory forecasting as a regression task. **Ours:** Our fusion RNN with two aux. tasks. In this setting, we introduce the adversarial training loss to generate more diverse trajectories.

Ablation Study

 $G_{\theta_G}(h_t)$

$$\int_{y,z} (1 - \cos(r_k - r'_k))$$

tor with the
rsarial loss)

$$og\left(1-D_{\theta_D}\left(h_t,G_{\theta_G}(h_t)\right)\right)$$

ECCV 2018 European Conference on Computer Vision