EE 655000 Machine Learning 機器學習
Spring 2025, Mon. 15:30 to 18:20, Location Delta 台達 215
Instructor: Min Sun
TAs: 陳嘉旻 cjm108061535@gapp.nthu.edu.tw
王彥晴 s112061518ee@gapp.nthu.edu.tw
歐曄 a0958637775@gmail.com
黃建齊 29970288qweqsc@gmail.com

Course Description
機器學習領域有各種不同演算法,讓電腦可以從資料中學習,完成目標任務。隨著各領域數位化資料的累積,機器學習已經應用在五花八門 的各種領域。例如早期應用在資料探開,搜索,推薦上。到後來可以應用在各種非結構資料上,如語音、影像、文字等。如今機器學習更是 應用在各種科學領域,例如天文學、生物學、化學等。 機器學習結合了統計、數學與資訊科學等學門。廣義來說,機器學習研究如何讓電腦具有學習的能力,從以往的經驗及 數據中學習到知 識,以增進電腦本身的效能,因此機器學習也可解釋為利用資料來建立一些模擬真實世界的模型 (Models),利用這些模式來描述資料中 的特徵(Patterns)以及關係(Relations)。這些模式有兩種用處,第 一,瞭解資料的特徵與關係可以提供決策所需要的資訊。第 二,資料的特徵可以幫助進行預測。
本課程包括手寫作業以及程式作業,以及自學ML應用介紹(ML self-tutorial)、期中/期末報告 (最多3人一組)。 請在後面了解自學ML應用介紹(ML self-tutorial)、期中/期末報告等要求。syllabus.
Prerequisites
本課程需要使用Python編寫程式,此外會使用到線性代數、微積分、機率等概念。Textbook
Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006, ISBN: 0387310738Resource
Machine Learning by Prof. Andrew NgGrading
總成績保括- 60% 三份手寫作業以及三份程式作業。
- 35% 期中簡報、期末簡報、期末報告. 最多3人一組。
- 5% 自學ML應用介紹(ML self-tutorial)。
Important Links
Contact Info and Office Hours
教授聯繫資訊如下。- Min Sun: sunmin@ee.nthu.edu.tw
- Min Sun, Delta 962, Time: By Request
- TAs, EECS Building 711, Time: Wed. 13:00~15:00
Tentative Syllabus
Week | Class Dates | Topic | Extra Info (e.g., Homework/Exam) |
---|---|---|---|
1 | Mon,Feb 17 | Opening | Group Form Out |
Math Review | |||
Python tutorial | |||
2 | Mon, Feb 24 | Intro. to ML | Homework 1 out. |
Probability Distributions | |||
3 | Mon, Mar 3 | Probability Distributions | Group Finalisation (2/27) |
Linear Regression Models | |||
Intro to Competitions | |||
4 | Mon, Mar 10 | Linear Classification Models | Homework 2 out. |
Self-Tutorial | |||
5 | Mon, Mar 17 | NN | |
PyTorch Intro Colab | |||
6 | Mon, Mar 24 | NN | Homework 1 due |
Self-Tutorial | |||
7 | Mon, Mar 31 | Transformer (new) | |
Competiton Preparation: Open to team-based meeting | |||
8 | Mon, Apr 7 | Mid-Term Presentations | Homework 3 out |
9 | Mon, Apr 14 | Kernel Methods | Homework 2 due |
Self-Tutorial | |||
10 | Mon, Apr 21 | Sparse Kernel Machines | |
Self-Tutorial | |||
11 | Mon, Apr 28 | Graphical Model | |
12 | Mon, May 5 | Mixture Models and EM | |
Sampling Methods | |||
Self-Tutorial | |||
13 | Mon, May 12 | Ensemble Learning | |
Buffer | |||
14 | Mon, May 19 | New Trend (new) | Homework 3 due |
Competiton Preparation: Open to team-based meeting | |||
15 | Mon, May 26 | New Trend (new) | |
Competiton Preparation: Open to team-based meeting | |||
16 | Mon, Jun 2 | Final presentation |